Отсоединение чипа от поверхности кристаллодержателя светодиода

Устройство кристалла ИМС с шариковыми выводами и почему происходит отсоединение шарика

Рис. 1 Чип ОЗУ Hunix. Схематично показана разварка кристалла (белые черточки) и
сам кристалл (темный прямоугольник), хотя сам корпус припаян на шариках.

Если количество выводов у потенциального кристалла велико, от 600 до over 4000, то разработчик разрабатывает кристалл сразу под шариковые вывода, например, такие кристаллы, как CPU и GPU. Да и физически разварка проволокой такого количества выводов это длительный последовательный процесс, а про программирование машины вообще молчу.

Рис. 2 Графический чип AMD Fiji. На кристалле ИМС более 4000 припойных шариков, не на корпусе.

Шариковый вывод представляет собой шарик из припоя (может быть свинцосодержащий или без оного), который выполняет одновременно 3 функции:
1. Держит кристалл на текстолите или кремниевом интерпозере (как у AMD Fiji)
2. Служит для отвода тепла
3. Создает электрическое соединение кристалла с внешней средой

Если кристалл изготовлен под шариковые вывода, то контактные площадки из меди формируются по всей поверхности кристалла в виде некоторой матрицы, и представляют собой по сути продолжение топологии кристалла. Затем на медь, где это нужно, наносится защитный слой пассивации, и не наносится там, где будет располагаться шарик. Открытой участок меди покрывается слоем UBM и после этого он готов к нанесению шарика. Часть слоя UBM ложится на пассивацию, тем самым полностью закрывая медь и создавая выступ по периметру площадки.

Рис. 3 КП под шариковый вывод. Желтый цвет – медь под пассивацией, серый – покрытие UBM.

Если кристалл изготовлен под проволочную разварку, то контактные площадки (КП) для разварки представляют собой прямоугольники с покрытием в основном из алюминия, и располагаются по периметру кристалла.

Рис. 4 КП под проволочную разварку размером порядка 100 х 100 мкм

Напрямую подсоединить припойный шарик к такой КП тоже невозможно: припой не может припаяться к алюминиевой площадке. Чтобы это сделать припаять шарик, также применяют технологию UBM.
И так, UBM это прослойка между припойным шариком и металлом контактной площадки на кристалле. Её задачей является адгезия с контактной площадкой, диффузионная защита и смачиваемость для припоя. UBM необходима для создания структур с шариковыми соединениями и она также позволяет создавать структуры для шариков и на ИМС, созданных для разварки.

Рис. 5 Месторасположение UBM

Интерфейс UBM должен обеспечивать выполнение следующих условий:
1. Создавать надежную связь с алюминием контактной площадки и со слоем пассивации на кристалле. Важно, чтобы сам слой пассивации был без мелких отверстий, потому что это может привести к замыканию при создании проводящих слоев UBM.
2. Иметь низкое сопротивление с контактной площадкой. Для выполнения этого требования оксид алюминия удаляется с поверхности КП перед нанесением первого слоя UBM.
3. Обеспечивать барьер для диффузии материала припойного шарика и материала КП.
4. Внешний слой UBM должен быть смачиваемым для припоя.
5. Иметь защиту от образования окисного слоя на открытой поверхности.
6. Оказывать как можно меньшее напряжение на кристалл.

UBM представляет собой как минимум 3 втравленных слоя тонких пленок металлов.
1. Слой адгезии к КП. Служит для формирования связи между металлом КП и слоем пассивации ИМС и защищает от диффузии между КП и припойным шариком. Обычно используемые для этого материалы: Хром (Cr), титан (Ti), титан/вольфрам (Ti/W), никель (Ni), молибден Mo. Толщина этого слоя порядка 0.15 – 0.2 мкм.
2. Слой, смачиваемый для припоя. Для создания паяного соединения с припойным шариком. Используются металлы: Медь (Cu), Никель (Ni), Палладий (Pd). Обычная толщина слоя

1 – 5 мкм.
3. Слой защиты от окисления. Для этого используется золото (Au). Толщина

Можно составить много комбинаций слоев UBM, например, Ti/Cu/Au, Ti/Cu, Ti/Cu/Ni, TiW/Cu/Au, Cr/Cu/Au, Ni/Au, Ti/Ni/Pd, Mo/Pd. Однако разные структуры UBM имеют разные свойства и разную надежность. Например, Ti/Cu/Ni имеет лучшую адгезию, чем Ti/Cu. Комбинации материалов UBM сказываются на надежности соединения к площадке кристалла, так и к шарику припоя. UBM должена быть совместима с материалом припойного шарика. Внешний слой UBM, который хорошо работает со свинцовыми припоями, может плохо подходить для бессвинцовых припоев. Например, Cu дает хорошее паяное соединение со свинцовыми припоями, и плохое с бессвинцовыми, потому что чистое олово образует интерметаллическое соединение с медью Sn-Cu. Если медь полностью поглотиться припоем, то контакт разорвется.

Посмотрим, как это выглядит на примере микросхемы, которая была изначально разработана для проволочной разварки, а затем доработана под шариковые вывода. Причем топология кристалла никак не менялась для шариков. И правда, если кристалл работает, зачем лезть? Это микросхема WL1271L – микросхема Wi-Fi и Bluetooth от Texas Instruments. На фото её фрагмент:

Рис. 6 Фрагмент кристалла WL1271L.

Вот тут привлекает момент, что есть возможность, не прибегая к изменению топологии кристалла адаптировать его под шариковые вывода с помощью формирования слоев поверх кристалла. Для этого требуются дополнительные операции над пластиной с кристаллами, операции формирования шариков, но это дает преимущество в экономии места на плате, ведь при размерах шарика в 200 — 250 мкм ему не нужна плата переходник, то есть можно производить монтаж кристалла прямо на плату. Насколько мне известно, в России такого не делают, хотя микросхемы есть, которые подходят для этого, зато некоторые импортные ИМС так делают. По-хорошему такая технология должна удешевлять стоимость конечного продукта. Для военных она может не подойти из-за требований надежности, а вот для домашнего использования, при достижении приемлемой цены, вполне.

Теперь посмотрим на пример ИМС, которая разработана специально для шариковых выводов. Берем видеокарту, и взламываем кристалл, зачищаем, протравливаем смесью персульфата аммония и медного купороса.

Рис. 7 Контактная площадка до (слева) и после травления (справа).

При травлении олова (а шарики должны быть бессинцовые) олово вытесняет медь из медного купороса, а потом эту медь в виде металла поглощает персульфат аммония. Таким образом площадка очищается от олова. Под микроскопом при изменении фокуса видно углубление после удаления олова, на фото это не так хорошо видно. Медные провода, расходящиеся от контактной площадки не подверглись травлению, потому что защищены пассивацией. Медь под самой контактной площадкой также осталась не тронутой, потому что верхний слой UBM не вступил в реакцию ни с персульфатом аммония, ни с купоросом, тем самым обнажив себя и по этому его свойству можно погадать, что это за металл.

Теперь о проблеме шариковых выводов. При проволочной разварке кристалл соединяет с корпусом алюминиевой / золотой проволокой и даже если её деформировать, соединение останется, потому что проволока пластична. А вот шариковый вывод жесткий, мало пластичный, не тянется и при определенных условиях он может отстать от контактной площадки (потому что в этом месте толщина металла минимальна => нагрузки больше). Разрушение / отслоение приводит к росту сопротивления и разрыву цепи.

Рис. 8 Расположение слоя UBM и шарика (вид сверху).

UBM располагается непосредственно под шариковым выводом (если смотреть на кристалл со стороны шариков). При расположении друг на друге шарик оказывает напряжение на UBM и может отсоединиться со слоем металла UBM или от самого UBM.

Некоторые отсоединения шарика не скажутся на работе устройства, например, при наличии большого количества шариков по питанию, подключенных параллельно, отсоединение одного из них не приведет к сбою в работе устройства. А вот если отсоединение происходит на линии, по которой идут данные… Такая проблема называемой “отвалом чипа” и приводит к сбоям в работу устройства. Так вот, это отваливается / отвалился шарик не между подложкой и платой (хотя и такое может быть), а между кристаллом и подложкой. С большой долей вероятности разрушение контакта шарика произошло в месте припайки к UBM из-за многочисленных циклов нагрева/остывания кристалла. А видеокарты разогреваются быстро и до больших температур, что приводит к механическому напряжению. Поэтому справедливо правило, чем лучше охлаждение и “холоднее” система, тем дольше она прослужит. У процессоров интеловских критическая температура до 65 С, после которой начинает срабатывать защита от перегрева, а у видеокарт температура может доходить до 80-90 градусов.

Как утверждают на просторах интернета, можно засунуть видеокарту с отвалившимся кристаллом! (а не с другой проблемой, а потом кричать, что все починилось и автор не прав) в духовку и прогреть, и видеокарта снова заработает. Этого делать не нужно, потому что можно отравиться парами от пластмассы/текстолита и это не отремонтирует видеокарту. На некоторое время работоспособность может восстановиться, потому что из-за теплового расширения может пробиться окисный слой, но на долго, пока процесс коррозии/теплового расширения опять не отсоединит контакт, а это случится. Единственное для чего есть смысл греть видеокарту – это для диагностики, чтобы точно определить отвал.

Как выпаять светодиод из светодиодной лампы

Led лампочку из SMD светодиодов можно починить, если один или несколько чипов перегорели (СОВ пластины отремонтировать нельзя). Нужно провести проверку тестером, выпаять светодиод и соединить цепь или вставить новый элемент. При использовании первого варианта лампочка становиться тусклее, сокращается срок службы. Исправный чип можно взять из другого прибора или купить через интернет. Важно выбрать элементы со схожими параметрами.

Строение диодных элементов и как их паять

СМД светодиоды устанавливаются на ленты и линейки, в лампы. У них отсутствуют выводы из проволоки, на алюминиевой или пластиковой печатной плате эти элементы соединяются между собой специальными дорожками при помощи пайки. Отпаять и припаять их не сложно, если имеется маломощный паяльник и флюс или газовая горелка.

Читайте также  Светодиоды направленного свечения

Печатная плата светодиодной ленты изготовлена из гибкого пластика. Она имеет вид перфорации, может быть одно- или двухслойная. Сначала на ленту при помощи станка или вручную наносится специальная паяльная паста. Далее робот-станок расставляет по местам светодиоды и резисторы. Пайка осуществляется в печи, состоящей из 5-и камер, в каждой из которых поддерживается разная температура. На выходе получается готовая к установке лента.

Каким образом подключаются диоды

Печатная плата светодиодной лампы чаще всего алюминиевая. Этот материал обеспечивает эффективный отвод тепла на радиатор. Количество чипов на плате зависит от мощности и конструкции осветительного прибора. Особенность контактных выводов СМД – наличие с обратной стороны подложки, отводящей тепло, которая тоже припаивается к токопроводящей дорожке. При демонтаже ее тоже необходимо отпаять.

Справка! На пластиковой светодиодной ленте так же имеются токопроводящие дорожки. Основное отличие от изделий с алюминиевой основой – метод пайки.

Что необходимо для работы

Чтобы отпаять от алюминиевой платы светодиоды, требуется:

  • тестер;
  • пинцет;
  • паяльник (лучше с тонким жалом);
  • флюс;
  • держатель (если нет помощника);
  • лезвие.

Если паяльник стандартный, делается насадка на жало из медной проволоки.

Внимание! Для прогрева платы можно использовать строительный фен, компактную газовую горелку или турбозажигалку. При установке нового диода допускается использование клей-пасты, проводящей ток.

Пошаговая инструкция, как отпаять светодиод

Чтобы вынуть из осветительного прибора алюминиевую плату, необходимо отделить корпус от плафона. Это можно сделать при помощи ножа, стараясь не повредить элементы. Плата к основанию припаяна при помощи двух проводов (плюсового (красного) и минусового). Их нужно отпаять, предварительно закрепив в держателе. Жало паяльника смачивается флюсом. С алюминиевого основания плата просто снимается.

Далее тестером проверяются все дорожки, для тестирования светодиодов чаще всего достаточно визуального осмотра. Если хотя бы один из них сгорел, на нем появляется черная точка. Однако лучше проверить все мультиметром или тестером в режиме сопротивления – неисправность не всегда влечет за собой почернение.

Внимание! Если в лампе элементы с двумя последовательно подключенными светодиодами, для прозвонки требуется напряжение от 6 В, поэтому тестирование проводится присоединением к блоку питания на 9-12 В.

Осмотреть необходимо так же качество припайки. Случается брак на производстве, мешающий нормальному функционированию лампочки.

После определения сгоревших светодиодов алюминиевую плату нужно закрепить в держателе, в одну руку взять паяльник (горелку), в другую – пинцет. Горелка подносится к обратной стороне платы, через несколько секунд пайка размягчается, диод легко снимается пинцетом. Исправный элемент «приклеивается» до того, как остыло алюминиевое основание.

Примерно так же можно отпаять диоды из ламп «кукуруза», если они классические или маленькие с колбой и плата изготовлена из алюминиевого сплава (не из стеклотекстолита). Лучший вариант – паяльник (феном приходится долго греть). Жало должно быть П-образное, что позволяет отпаять сразу 2 точки. Чип снимается с платы пинцетом.

Если осветительный прибор изготовлен для замены люминесцентного источника, диоды расположены на алюминиевой линейке. Перед тем, как отпаять чипы, ее нужно закрепить, чтобы предотвратить повреждение токопроводящих дорожек. Олово плавится паяльником, одновременно между выводом и платой продвигается лезвие. После освобождения всех выводов необходимо прогреть кристалл и при помощи лезвия отсоединить от платы подложку.

Внимание! Некоторые мастера советуют отпаивать диод наложением на кристалл флюса и немного припоя. Чип греется горелкой до тех пор, пока диод можно снять при помощи пинцета. К припою без свинца советуют добавить сплав Вуда, снижающий вероятность перегрева алюминиевой платы.

Чтобы отпаять СМД от светодиодной ленты, ее нужно прогреть феном, чтобы размягчилась паста. Для снятия с платы выпаянного чипа используется пинцет.

Техника безопасности

Если проводится ремонт прибора, который запитан от электросети, требуется соблюдение правил техники безопасности.

Светодиодные осветительные приборы подключаются к напряжению 220 В, это требует повышенной осторожности:

  • после выключения лампочки необходимо вручную разрядить конденсаторы (закоротить выводы металлическим предметом, оснащенным ручкой из диэлектрика);
  • при включении после ремонта лучше отвернуться (не исключена возможность взрыва);
  • во время ремонта нельзя оставлять без присмотра паяльную станцию или паяльник (250-260 градусов вполне достаточно для возникновения пожара).

Зная конструкцию и принцип работы светодиодной лампы, ее можно отремонтировать. Однако существуют модели, которые подлежат только замене.

Основные выводы

Светодиодные источники света сравнительно дорогие, поэтому каждому хочется, чтобы они работали подольше. Чтобы прибор не перегорел через 2-3 месяца, не следует покупать дешевое изделие. В нем чипы соединены последовательно, при выходе из строя одного лампочка перестает гореть. Дешевую лампу никто не захочет ремонтировать, ее проще заменить.

Причины выхода из строя светодиодных источников света:

  • некачественный припой;
  • прогар одного или нескольких диодов;
  • пробой.

Прежде, чем выбрасывать светодиодную лампу, желательно проверить, подается ли на плату напряжение. Причиной того, что прибор не горит, может стать неисправность драйвера или проводки.

После того, как лампочка разобрана, необходимо проверить качество припоя. Исправить такую ошибку производителя проще всего – достаточно накапать на проблемное место немного олова.

При пробое светодиод превращается в обыкновенный проводник тока. Для определения этой неисправности требуется тестер. Случается, что в осветительные приборы изначально монтируются неисправные чипы или резисторы, перед покупкой проверить это невозможно. При обнаружении неисправных элементов нужно их отпаять и припаять новые.

Если под рукой нет исправных светодиодов с соответствующими характеристиками, 1-2 из них можно заменить перемычками или резисторами (второй вариант лучше), обладающими таким же сопротивлением, как диоды.

Yablya’s блог

BGA-компановка чипа, и почему «отвал чипа» — отговорка.

Запись опубликована Lexis77 · 7 мар 2013, 19:11

71 339 просмотров

В общем, как и обещал, попробую донести до вас, как устроен чип, почему помогает прогрев, почему он временный, и почему некоторые считают, что чип отваливается от платы, и готовы себя за попу укусить, доказывая «на практике», что они правы.

Начнем с того, что это не «болезнь» чипов nVidia, а исключительно физические и химические процессы, коим подвержены практически ЛЮБЫЕ элементы на планете, а не только электроника.

Но остановимся мы исключительно на тематике, поднятой в этом форуме.

1. Вот внешний вид обычного видео чипа. да и большинства современных BGA чипов.

Посмотрим на него в разрезе.

(не стреляйте в пианиста, рисовал как умею)

Что мы видим на ней?

1. Обычный текстолит, который ничем не отличается от того текстолита, на котором собрана материнка вашего компа или ноутбука. Разве что, толщиной волокон и количеством слоев, ну и еще парой тонкостей технологического процесса, который нас сейчас не интересует.

2. Кремниевый кристалл, который крепится на этот текстолит, такими-же шариками, с некоторым отличием — шарики на столько мелкие, что увидеть это можно только в микроскоп (не, конечно же, при хорошем зрении или близорукости это и так видно, но понять тот факт, что это именно контактные площадки с шариками, а не непонятная мелкодисперсная сетка — хренвам!)

О внешнего воздействия и прочих факторов, он отделен компаундом, читайте — сверхтвердая термостойкая эпоксидка.

Шары, которые крепят кристалл к подложке (текстолиту) чипа, в отличие от тех свинцовых или бессвинцовых шаров, что плавятся между чипом и материнкой, имеют крайне высокую температуру плавления и плотность, а соответственно они хрупкие, типа как хром.

3. Плотность и тугоплавкость, это хорошо, но не вечно. А учитывая тот факт, что там ни разу не вакуум, а обычная, хоть и ограниченная среда, то и сплавы подвержены обычным физическим процессам. Причем эти процессы происходят весьма ускоренно из-за постоянного скачка температур (нагрев чипа до рабочих температур и остывание до комнатных), плюс ток, который, фактически, служит катализатором процесса.

Из-за этого происходит разрушение и окисление в местах разрушения. А соответственно — исчезновения контакта.

Самая большая нагрузка, происходит на канале обмена данными, т.е. ядро — память. Хоть это и не фатально для обеспечения работоспособности, но тем не менее, при неисправности мы можем визуально лицезреть эти ошибки — в виде артефактов на экране, либо нескольких экранах.

Почему прогрев помогает?

Если вы не вчера слезли с пальмы, и имеете элементарные знания в плане физики, то с легкостью поверите в мое следующее утверждение.

Металлы, при нагреве расширяются.

А раз мы в замкнутом пространстве расширяем металл, то соответственно мы создаем давление и рушим слабое окисление, восстанавливая тем самым контакт! Но это не панацея, а соответственно, мы не можем поддерживать этот процесс вечно.

На этих картинках, очень-очень примерно и сумбурно, показан процесс и последствия.

Конечно не сам шарик рушится, а точки наименьшего соприкосновения, при х100 увеличении, может и сам шарик треснуть пополам. Лично не один раз такое наблюдал. Но как правило от удара. но об этом позже.

Данный процесс является необратимым, т.к. окисление достигает такого уровня, что то расширение припоя от нагрева уже неспособно разрушить корку окисла. В теории, у нас есть «левши», но трудозатраты не сопоставимы с результатом, т.к. на восстановление полной работоспособности одного чипа, понадобится оборудование, минимум на 30 килоабамов. И много-много-много-много времени.

А теперь перейдем к практической части сего опуса. B)

Многие уже начитались в интеренах о том, что это чип отвалился от платы, надо пропаять, надо помолиться и т.д. Есть даже уникумы, которые зажаривают карты в духовках и показывают потом, как все хорошо работает. На самом деле — это не обман и действительно, в большинстве случаев такой вариант прокатит, но есть одно НО! Не хочешь срать — не мучай жопу . Не понимаешь процесса — не доказывай! Почему прогрев помогает, я уже описал, а теперь я попробую рассказать, как можно почесать себе правое ухо правой рукой, не сломав при этом ноги и без всей коллекции «Камасутры»

Читайте также  Провод для соединения колонок между собой

На самом деле, чтоб «прогреть» чипак, достаточно:

1. взять у мамы/сестры/жены обычный фен, надеть на него конус и направленным потоком хорошенько прогреть кристалл, этого достаточно для восстановления контакта.

2. Если есть паяльный фен, то примерно 300°С х 20-30сек

3. Снять радиатор и стартануть комп на 1 мнуту или до срабатывания защиты от перегрева, если это произойдет раньше.

Заметьте — никаких духовок, флюсов и прочего не надо. И все эти способы являются диагностическими и ВРЕМЕННО позволяют восстановить работоспособность. Т.е. на час-месяц. иногда, на ранних стадиях проявления деффекта, доходило до полугода. Но это все ерунда.

Как продлить работоспособность «гретой» карты? Очень просто — не выключать комп. Самая большая нагрузка идет в период вкл/выкл, да и нагрев/охлаждение не способствует продлению жизни.

ЗЫ Отвал чипа от платы возможен, как таковой, но для этого нужно деформировать/ударить ее. Были случаи с интеловскими чипами 965-45, 10-11 года, на которых был заводской брак — там изначально, с НОВОГО чипа, можно было стряхнуть нанесенные шары из-за того, что их катали на окисленные площадки. Возможно были нарушения хранения или что-то у них сломалось. хрен знает, но такой факт был.

Ну и предвкушая самые популярные вопросы:

Нет, прогреть шары под кристаллом до оплавления нельзя — подложка вздуется и/или кристалл лопнет.

Нет, сдавить пальцами не получится, площадь, кол-во шаров и сопромат не позволят.

Нет, пересадить кристалл тоже не получится — об этом писал выше, + такие шары. точнее шарушечки не найти.

В общем. задавайте вопросы, рассуждайте, опровергайте. Я готов к диалогу.

Хотите узнать больше о технических нюансах того или иного оборудования? Пишите, что Вас интересует.

Предлагаю профессиональный ремонт ноутбуков за BTC.

Принимаю благодарности в любом объеме — 1BxtPpcWWWheAjnxuz49JtS5SSYauBm5Ax

Как отпаять светодиод от алюминиевой платы: замена диода в СМД лампе, как демонтировать один светодиод с ленты или пластины

Led лампочку из SMD светодиодов можно починить, если один или несколько чипов перегорели (СОВ пластины отремонтировать нельзя). Нужно провести проверку тестером, выпаять светодиод и соединить цепь или вставить новый элемент. При использовании первого варианта лампочка становиться тусклее, сокращается срок службы. Исправный чип можно взять из другого прибора или купить через интернет. Важно выбрать элементы со схожими параметрами.

Строение диодных элементов и как их паять

СМД светодиоды устанавливаются на ленты и линейки, в лампы. У них отсутствуют выводы из проволоки, на алюминиевой или пластиковой печатной плате эти элементы соединяются между собой специальными дорожками при помощи пайки. Отпаять и припаять их не сложно, если имеется маломощный паяльник и флюс или газовая горелка.

Печатная плата светодиодной ленты изготовлена из гибкого пластика. Она имеет вид перфорации, может быть одно- или двухслойная. Сначала на ленту при помощи станка или вручную наносится специальная паяльная паста. Далее робот-станок расставляет по местам светодиоды и резисторы. Пайка осуществляется в печи, состоящей из 5-и камер, в каждой из которых поддерживается разная температура. На выходе получается готовая к установке лента.

Каким образом подключаются диоды

Печатная плата светодиодной лампы чаще всего алюминиевая. Этот материал обеспечивает эффективный отвод тепла на радиатор. Количество чипов на плате зависит от мощности и конструкции осветительного прибора. Особенность контактных выводов СМД – наличие с обратной стороны подложки, отводящей тепло, которая тоже припаивается к токопроводящей дорожке. При демонтаже ее тоже необходимо отпаять.

Справка! На пластиковой светодиодной ленте так же имеются токопроводящие дорожки. Основное отличие от изделий с алюминиевой основой – метод пайки.

Что необходимо для работы

Чтобы отпаять от алюминиевой платы светодиоды, требуется:

  • тестер;
  • пинцет;
  • паяльник (лучше с тонким жалом);
  • флюс;
  • держатель (если нет помощника);
  • лезвие.

Если паяльник стандартный, делается насадка на жало из медной проволоки.

Внимание! Для прогрева платы можно использовать строительный фен, компактную газовую горелку или турбозажигалку. При установке нового диода допускается использование клей-пасты, проводящей ток.

Пошаговая инструкция, как отпаять светодиод

Чтобы вынуть из осветительного прибора алюминиевую плату, необходимо отделить корпус от плафона. Это можно сделать при помощи ножа, стараясь не повредить элементы. Плата к основанию припаяна при помощи двух проводов (плюсового (красного) и минусового). Их нужно отпаять, предварительно закрепив в держателе. Жало паяльника смачивается флюсом. С алюминиевого основания плата просто снимается.

Далее тестером проверяются все дорожки, для тестирования светодиодов чаще всего достаточно визуального осмотра. Если хотя бы один из них сгорел, на нем появляется черная точка. Однако лучше проверить все мультиметром или тестером в режиме сопротивления – неисправность не всегда влечет за собой почернение.

Внимание! Если в лампе элементы с двумя последовательно подключенными светодиодами, для прозвонки требуется напряжение от 6 В, поэтому тестирование проводится присоединением к блоку питания на 9-12 В.

Осмотреть необходимо так же качество припайки. Случается бpaк на производстве, мешающий нормальному функционированию лампочки.

После определения сгоревших светодиодов алюминиевую плату нужно закрепить в держателе, в одну руку взять паяльник (горелку), в другую – пинцет. Горелка подносится к обратной стороне платы, через несколько секунд пайка размягчается, диод легко снимается пинцетом. Исправный элемент «приклеивается» до того, как остыло алюминиевое основание.

Примерно так же можно отпаять диоды из ламп «кукуруза», если они классические или маленькие с колбой и плата изготовлена из алюминиевого сплава (не из стеклотекстолита). Лучший вариант – паяльник (феном приходится долго греть). Жало должно быть П-образное, что позволяет отпаять сразу 2 точки. Чип снимается с платы пинцетом.

Если осветительный прибор изготовлен для замены люминесцентного источника, диоды расположены на алюминиевой линейке. Перед тем, как отпаять чипы, ее нужно закрепить, чтобы предотвратить повреждение токопроводящих дорожек. Олово плавится паяльником, одновременно между выводом и платой продвигается лезвие. После освобождения всех выводов необходимо прогреть кристалл и при помощи лезвия отсоединить от платы подложку.

Внимание! Некоторые мастера советуют отпаивать диод наложением на кристалл флюса и немного припоя. Чип греется горелкой до тех пор, пока диод можно снять при помощи пинцета. К припою без свинца советуют добавить сплав Вуда, снижающий вероятность перегрева алюминиевой платы.

Чтобы отпаять СМД от светодиодной ленты, ее нужно прогреть феном, чтобы размягчилась паста. Для снятия с платы выпаянного чипа используется пинцет.

Техника безопасности

Если проводится ремонт прибора, который запитан от электросети, требуется соблюдение правил техники безопасности.

Светодиодные осветительные приборы подключаются к напряжению 220 В, это требует повышенной осторожности:

  • после выключения лампочки необходимо вручную разрядить конденсаторы (закоротить выводы металлическим предметом, оснащенным ручкой из диэлектрика);
  • при включении после ремонта лучше отвернуться (не исключена возможность взрыва);
  • во время ремонта нельзя оставлять без присмотра паяльную станцию или паяльник (250-260 градусов вполне достаточно для возникновения пожара).

Зная конструкцию и принцип работы светодиодной лампы, ее можно отремонтировать. Однако существуют модели, которые подлежат только замене.

Основные выводы

Светодиодные источники света сравнительно дорогие, поэтому каждому хочется, чтобы они работали подольше. Чтобы прибор не перегорел через 2-3 месяца, не следует покупать дешевое изделие. В нем чипы соединены последовательно, при выходе из строя одного лампочка перестает гореть. Дешевую лампу никто не захочет ремонтировать, ее проще заменить.

Причины выхода из строя светодиодных источников света:

  • некачественный припой;
  • прогар одного или нескольких диодов;
  • пробой.

Прежде, чем выбрасывать светодиодную лампу, желательно проверить, подается ли на плату напряжение. Причиной того, что прибор не горит, может стать неисправность драйвера или проводки.

После того, как лампочка разобрана, необходимо проверить качество припоя. Исправить такую ошибку производителя проще всего – достаточно накапать на проблемное место немного олова.

При пробое светодиод превращается в обыкновенный проводник тока. Для определения этой неисправности требуется тестер. Случается, что в осветительные приборы изначально монтируются неисправные чипы или резисторы, перед покупкой проверить это невозможно. При обнаружении неисправных элементов нужно их отпаять и припаять новые.

Если под рукой нет исправных светодиодов с соответствующими хаpaктеристиками, 1-2 из них можно заменить перемычками или резисторами (второй вариант лучше), обладающими таким же сопротивлением, как диоды.

Как правильно перепаять светодиод

Лампочки со светодиодами потребляют меньше энергии, чем лампы накаливания. Также они служат гораздо дольше, поэтому владельцы домов и квартир постепенно переходят на экономичное освещение. Но несмотря на продолжительный срок службы, LED-лампочки постепенно могут выходить из строя из-за перегорания установленных внутри светодиодов.

Когда один из чипов портится, это не повод выбрасывать лампочку, её можно починить. Для этого понадобится тестер, чтобы определить поломку, затем можно заменить испорченный элемент или соединить цепь. В последнем случае ремонт негативно отразится на сроке службы лампы, она станет светить тусклее. Поэтому лучше заменить чип на другой. Для этого нужно знать, как паять светодиоды.

Как устроены диодные элементы

Внутри светодиодных ламп установлены диоды. Также их монтируют в линейки и ленты, которые часто используются в рекламных баннерах. Выводы контактов здесь отсутствует. Диоды установлены на пластиковую или алюминиевую печатную ленту и соединяются друг с другом специальной дорожкой во время пайки. Снять светодиод или установить новый не сложно, если под рукой есть газовая горелка паяльник и флюс.

Читайте также  Датчик оборотов двигателя для контроллера

В большинстве случаев светодиодные лампы изготавливают из алюминия, который способен обеспечить эффективный теплоотвод на радиатор. Внутри устанавливается разное количество светодиодов, что определяет мощность. Контактные выводы диодной ленты имеют с обратной стороны подложку для отвода тепла. Она припаивается к теплоотводящей площадке. Снимая один из диодов, её также придется отпаять.

Соблюдение техники безопасности

В процессе ремонта любого прибора, который запитывается от электросети, необходимо соблюдать технику безопасности. Осветительные приборы LED, как и лампочки накаливания, подключены к сети 220 вольт. Поэтому мастер должен быть внимательным и учитывать рекомендации:

  • после выключения лампы необходимо вручную выполнить разрядку конденсаторов. Для этого выводы закорачиваются металлическим прибором с ручкой из диэлектрика.
  • в процессе выпаивания нельзя оставлять паяльную станцию без присмотра, это может спровоцировать пожар;
  • включая установленную лампочку лучше отвернуться, так как есть вероятность, что из-за возможных ошибок она взорвется.

Пайка светодиодов непростой процесс для новичка. К ремонту следует приступать только в том случае, если вы имеете опыт работы с паяльником, знакомы с конструкцией и принципом работы чипов.

Как отпаять и припаять заново светодиод

Перед тем как приступить к пайке, необходимо изучить инструкцию и обзавестись материалами и инструментами для работы. Не стоит забывать о проверке приобретённых светодиодов. Иногда мастера пренебрегают этим правилом, из-за чего работу приходится выполнять дважды.

Что необходимо для работы

Для выпаивания светодиода из алюминиевой платы необходимы:

  • пинцет;
  • лезвие;
  • паяльник (рекомендуется с тонким жалом);
  • флюс;
  • держатель.

Если нет паяльника с тонким лезвием, можно сделать насадку из медной проволоки.

Температура пайки

Индикаторный диод, который устанавливается на печатную плату состоит из токопроводящих ножек и стеклянной колбы. Внешне он напоминает маленькую лампочку. Для пайки необходимо использовать паяльник с мощностью не более 60 Вт. Допустимая температура жала – 260 градусов. SMD-диоды не имеют токоведущих элементов. Их заменяют специальные контактные площадки на плате. В данном случае для пайки используют паяльник мощностью 12 Вт.

Пошаговая инструкция отпайки

На первом этапе снимают алюминиевую плату. Для этого корпус лампы отделяется от плафона. Здесь можно использовать нож, аккуратно, чтобы не повредить элементы. К основанию площадка крепится с помощью пары проводов (плюс и минус). Их следует отпаять, закрепив плату на держателе. С алюминиевого основания плату можно снять без помощи инструментов.

Перед тем, как начать выпаивать светодиод, нужно взять тестер и пройтись по всем чипам, чтобы проверить их работоспособность. В большинстве случаев повреждённые элементы можно заметить визуально. На прогоревшем светодиоде появляется черная точка.

Проверку лучше выполнять с помощью тестера, так как иногда поломка не влечет за собой видимых изменений.

Особое внимание рекомендуется уделять качеству пайки. Если брак был допущен на производстве, это отразится на функциональности чипов.

Схема пайки

Когда будут определены все сгоревшие диоды, можно приступить к пайке. Плата закрепляется на держателе. После горелку аккуратно подносят к обратной стороне платы. Через 3-5 секунд пайка должна ослабнуть, что даст возможность отсоединить диод. Исправный элемент должен быть закреплён до того, как остынет основание. Для этого на контактную площадку нужно поместить каплю флюса. Чип устанавливается сверху с учётом полярности.

Далее снова нагревают, при этом на кристалл нужно слегка надавить. Диод держать до того момента, пока контактные «ножки» надёжно не закрепятся в припое. Если светодиода нет, на его место можно припаять небольшой отрезок проволоки. Лампа продолжит работать, но светить будет тусклее. Такой вариант подойдёт, только если на плате установлено более 10-ти чипов.

По такой же схеме отпаиваются диоды из ламп «кукуруза». Это можно сделать, если лампочка небольшого размера и собрана по классической схеме. Вместо паяльника иногда используется фен, но уходит больше времени на работу.

Перед пайкой чипов линейку следует закрепить для предотвращения повреждения токоотводящих дорожек. Олово плавят паяльником, между платой и выводом одновременно продвигается лезвие. Когда будут освобождены все выводы, подложка от платы отсоединяется.

Видеопример: Замена светодиодов в лампе с помощью утюга.

Частые ошибки при пайке

Неопытные мастера часто допускают следующие ошибки:

  • установка коннектора на токоведущие контакты. Это приведёт к плохому соединению;
  • работа паяльником, разогретым до 300 °C и выше. Это спровоцирует сжигание токоведущих нитей;
  • использование агрессивного раствора приведёт к разъеданию контактов;
  • несоблюдение полярности при установке диода на плату.

Чтобы новый диод работал долго и не перегорел, перед установкой на плату с неё следует удалить остатки припоя. Для этого рекомендуется использовать проволочную оплётку от экранированного провода. Допущенные в процессе работы ошибки могут спровоцировать мгновенное перегорание или взрыв лампы при включении.

Lumileds › Блог › Почему выходят из строя светодиоды

Светодиодные источники освещения с каждым днем завоевывают все большую популярность, быстро вытесняя старые лампы со спиралью накаливания. LED-лампы обладают рядом ощутимых преимуществ, главными из которых является долговечность и низкое энергопотребление. Срок службы светодиодов лучших мировых производителей уже способен достигать 12 лет! Тем не менее, автовладельцы, пользующиеся светодиодными лампами, время от времени сталкиваются с их преждевременным, причем иногда — еще и довольно быстрым, выходом из строя. Почему же так происходит?

Во время своей работы часть получаемой энергии диод преобразует в свет, а часть — в тепло. Тепловая составляющая, в случае светодиодов, является полностью паразитной. Более того, под воздействием повышенной температуры кристалл диода начинает деградировать. По мере ухудшения свойств все большее количество энергии превращается в тепло, деградация ускоряется, диод тускнеет — настоящий эффект снежного кома. Как и любой полупроводник, светодиод категорически не приемлет высокой температуры.

Борьба с перегревом

Для снижения рабочей температуры ведущие компании-производители светодиодной техники внедряют в свои готовые решения системы охлаждения. В качестве примера можно рассмотреть светодиодные лампы Philips для автомобильного транспорта. Поскольку речь всегда идет о компактных лампах, которые устанавливаются в блок-фары, часто — в непосредственной близости от моторного отсека, срок службы светодиодов будет напрямую зависеть от эффективности охлаждения. Для ламп различных типов и мощности Philips предлагает два типа охлаждения: пассивное и активное. Пассивное охлаждение, известное как технология Philips AirFlux, основано на использовании алюминиевого радиатора сложной формы и большой площади. Благодаря особой, рассчитанной компьютерами поверхности, при правильном ориентировании лампы инициируется самотек воздуха через радиатор, и он тем выше, чем выше поднимается температура.

Таким образом, система AirFlux способна поддерживать оптимальную температуру лампы, что в свою очередь обеспечивает ее долгую работу. Компактный радиатор подходит для охлаждения определенного типа ламп, в которых установлены не самые мощные светодиоды. Для ламп с более мощными светодиодами Philips использует технологию активного охлаждения AirCool. В целом система похожа на компактный кулер компьютерной техники: развитой радиатор охлаждается небольшим и маломощным вентилятором.

Электрические нюансы

Светодиод не лампа накаливания: ток через диод для «вырабатывания» света необходимо пропускать в строго определенном (прямом) направлении. Кроме того, светодиоды чувствительны к повышению силы тока, для чего их всегда подключают к источнику тока, а не напряжения. Для правильной работы светодиод обязательно должен иметь схему управления.

Это очень важно в разрезе автомобильных светодиодов, поскольку повышение напряжения для диода смертельно. Стандартное напряжение, на которое рассчитаны эти источники света — 12,7 В. Любой автомобилист знает, что в машине это значение достигается только при работе электрики от аккумулятора, тогда как генератор современного авто часто поднимает напряжение до 14 и даже 15 В. Особенно часто это происходит после холодного пуска двигателя зимой в морозы. Эти скачки напряжения губительны для светодиодов, и зачастую именно они становятся причиной быстрого выхода диода из строя. Повышение напряжения ведет к повышению тока на светодиоде, что практически по экспоненте увеличивает тепловыделение и ограничивает световой поток. Диод начинает греть, а не светить, и очень быстро в прямом смысле слова перегорает.

Грамотное управление

Учитывать такую специфику работы и стабилизировать входное напряжение — задача управляющей микросхемы, которая обязательно должна входить в состав светодиодной лампы. Чем мощнее светодиод, тем более сложной является такая схема, которая при работе и сама выделяет тепло, что также необходимо учитывать. Наличие управляющей схемы с широтно-импульсной модуляцией также является показателем качества светодиодной лампы от серьезного производителя. В дешевых лампах на этом часто экономят: в итоге диоды при повышении напряжения в бортовой сети светят ярко, но, увы, недолго.

А что же сам диод?

Ресурс светодиода также напрямую зависит от его качества. В современных SMD-диодах очень важно качество пайки чипа к подложке. При плохой пайке будет возрастать сопротивление, расти температура, то есть происходить все то, из-за чего светодиод быстро выходит из строя.

Кроме того, при неправильной установке светодиода на подложку не произойдет полный контакт теплоотвода, что не даст отвести достаточное количество тепла от кристалла. Казалось бы, нюансы. Однако работать так, чтобы все мелочи и детали были учтены, зачастую способен только крупный производитель, обладающий налаженной системой контроля качества.

Как же быть уверенным в том, что светодиодная лампа прослужит долго? Довериться крупному производителю и перестать покупать светодиоды сомнительного происхождения. В случае с продукцией под брендом Philips потребитель точно не ошибется и получит гарантированно проверенное и качественное решение. Автомобильные светодиодные лампы Philips обладают уникальными технологиями охлаждения и всегда комплектуются умными управляющими схемами. Именно это позволяет производителю с уверенностью заявлять о том, что автолампы Philips работают долго — вплоть до 12 лет!