Отражатели для светодиодов своими руками

Функции и область применения отражателей для светодиодов

Отражатели для светодиодов дают возможность получать максимально направленный поток при одновременном увеличении яркости устройств. Современные производители предлагают весьма широкий выбор подобных приспособлений, но при наличии свободного времени, подручных инструментов и несложных материалов, можно попробовать сделать отражатели своими руками.

Где может пригодиться отражатель?

Отражатели могут в разы улучшить основные свойства светодиодов, поэтому сфера их применения не ограничивается какой-то определенной областью светотехники.
Отражатель одинаково полезен в следующих случаях:

  • при переделке поворотников и других типов автомобильных ламп;
  • при сборке или модернизации фонариков различной дальности;
  • при усовершенствовании домашнего освещения.

Споры по поводу лучшей автомобильной оптики не стихают, и что лучше использовать – линзы или рефракторы – каждый решает для себя. Оба устройства помогают добиться приблизительно одинакового коэффициента отражения, вопрос здесь скорее в сложности управления световым лучом.

Для габаритных огней или других источников света с большим количеством светодиодов отражатели являются не только более экономным вариантом, но иногда и единственно возможным. Вместо огромной линзы намного проще использовать рефрактор или их систему.

Из чего и как сделать отражатель?

Для изготовления отражателя важно определиться не только с его размерами. Определенную роль играет именно количество плоскостей, от которых будут отбиваться лучи. Главная сложность как раз и заключается в том, чтобы их сформировать.

Основой может послужить любой в меру податливый, но довольно прочный материал. Встречаются вполне работоспособные отражатели из пластмассы, ламинированной фанеры или флизелина. То, как будет формироваться приспособление, зависит от типа корпуса. Иногда могут потребоваться многогранные кристаллы (их можно найти в некоторых видах старых ламп, а при небольших размерах отражателей подойдут бусины, используемые при изготовлении бижутерии) для придания рефрактору нужных свойств.

Важно не только придать материалу нужную форму, но также заставить его отражать свет, который подают светодиоды.

Отменным вариантом наружного покрытия может послужить хромированная краска, которая продается в баллонах. Можно не наносить отражающее покрытие, а доверить эту процедуру специалистам из профильной мастерской.

При проектировании любых оптических систем важно сохранить баланс между конечной стоимостью сборки и правильностью расстановки элементов. При этом следует учитывать такую закономерность: чем выше эффективность элемента – тем больше его чувствительность к месту установки.

Закрепить составляющие системы можно не только с помощью клея и клейкой ленты, но также с использованием штифтов и крючков с предохранителями, которые пропускаются через плату.

Какие они – современные отражатели?

Производители постоянно пополняют модельный ряд, существенно расширяя возможности светового тюнинга. Рефракторы выпускаются под самые разные светодиоды и их сочетания. Теперь вовсе не обязательно ограничиваться одним оттенком.

Устройства отражают свет в прямом и обратном направлении, тем самым делая распределение лучей более равномерным.

Отражатели могут быть рассчитаны на монтаж с акриловым стержнем, при том они помогут аккуратно скрыть светодиоды для наиболее эффективного их использования в режиме габарита задних автомобильных ламп.

Рефракторы могут корректировать и перенаправлять освещение светодиодов. Они рассчитаны на работу под прямым углом по отношению к оси диода. При подборе отражателя важно учитывать все параметры источников света. Типы корпуса и формы исполнения постоянно пополняются, поэтому стоит регулярно мониторить новинки, чтобы не упустить наиболее интересные варианты оптики.

Отражатели существенно улучшают свойства потока, который выдают светодиоды. Они одинаково нужны для тюнинга автомобильной оптики и для сборки фонарей и светильников. Простые модели можно попытаться сделать своими руками, но в некоторых случаях соперничать с производителями просто бессмысленно.

Отражатель-радиатор конической формы для сверхяркого светодиода

Улучшая предыдущую конструкцию отражателя-радиатора хотелось больше сфокусировать световой поток светодиода к центру. Коническая форма отражателя сама напрашивалась, поскольку она почти полностью соответствует форме параболического зеркала. После некоторых расчетов и экспериментов имеем следующую конструкцию

Для изготовления такой красоты понадобятся:
-алюминиевая (можно медная или жестяная) без царапин пластина толщиной до 1мм и размером 40х35мм
-однослойно фольгированная текстолитная пластина размером 20х15 мм
-сверхяркий светодиод, паяльник, два контактных провода, одна-две канцелярские скрепки
-немного термопасты
-плоскогубцы (круглогубцы), ножовка (ножницы) по металлу, надфили, циркуль, маленькая дрель
-прямые руки для получения правильных кривых поверхностей

Теория все та же. Для того чтобы получить параллельный пучок света, необходимо установить кристалл светодиода точно в фокус параболического зеркала. Вот рисунок из прошлой статьи

Она оказалась даже проще предыдущей, единственная сложность – придать ей правильную форму, поскольку от этого зависит точность фокусировки светового пучка.

Вот пример разметки заготовки на листе алюминия:

В разметке нет ничего сложного. Не нужно высчитывать градусы, длины дуг и т.п. Вначале наносятся все прямые линии, а потом проводятся две дуги радиусом 28мм до пересечения с прямыми и разметка готова.

Материалом для отражателя-радиатора может служить алюминий, медь, или жесть от консервной банки. Медь и жесть даже более предпочтительны, поскольку они могут спаиваться. Толщина материала должна обеспечивать достаточную прочность конструкции. Для алюминия это не меньше 0,5мм.
Теперь заготовка вырезается и сгибается. Вырезать желательно ножовкой, но если очень лень, можно и ножницами по металлу, как показано ниже. Тогда края придется выравнивать надфилем.

Выгибать отражатель нужно аккуратно, чтобы не царапать инструментом отражающую поверхность. После всех этих процедур получаем следующее:




Понятное дело, что контакты светодиода не должны касаться корпуса радиатора.

Ну вот собственно и все. Последний штрих – это закрепить между собой две половины конуса. Если материалом радиатора была медь или жесть, половинки просто спаиваются. Если же, как в данном случае, радиатор был сделан из алюминия, половинки склеиваются нанесением клея с внешней стороны отражателя. Эта, казалось бы, мелочь очень важна, поскольку прочность корпуса теперь увеличится в разы.

Теперь подключаем (соблюдая полярность) и наслаждаемся результатом. Сфера применения данной конструкции самая разнообразная, от настольных минисветильников и подсветок до самодельных фонариков

Как сделать рассеиватель для светодиодной ленты своими руками из подручных материалов?

Все светодиодные лампы, продаваемые в магазинах, оснащены плафонами-рассеивателями (диффузорами). Они позволяют равномерно осветить поверхность и сделать свет от лампы более мягким.

Как быть, если есть светодиодная лампа собственного изготовления или возникло желание смастерить дополнительную подсветку в автомобильную фару? Нужно изготовить рассеиватель для светодиодной ленты своими руками.

Принцип работы рассеивателя

Свет от точечных источников света, в частности от светодиодов, имеет относительно малый угол расхождения — до 120 градусов. При небольшом расстоянии от источника можно увидеть резкий перепад освещённости за пределами этого угла. Как рассеять свет от светодиода? Решить проблему может любой светопреломляющий материал.

В заводских условиях для этого используют прозрачный или матовый пластик, на поверхности которого при отливке формируется особая текстура. Понятно, что в домашних условиях такие технологии недоступны.

Простейший светорассеиватель для светодиодов можно сконструировать за несколько секунд из обычного пищевого целлофанового пакета, только он должен быть не прозрачным, а матовым. Оберните диод в один слой целлофана, и увидите результат. Почему так происходит?

У прозрачных материалов кристаллическая решётка упорядочена, и фотоны от источников света, проходя сквозь него, не изменяют траекторию. В случае матового оттенка, у каждого микро слоя своя структура.

Так свет проходит сквозь прозрачную и матовую поверхность

Светорассеиватель для светодиодов своими руками можно сделать из самых обычных материалов, которые можно купить в ближайшем магазине хозтоваров.

При выборе материала следует учесть несколько важных моментов. Светодиодная лампа при правильном расчете параметров питания способна отработать многие годы, поэтому и материал светоотражателя не должен потерять свои свойства за это время. Нельзя забывать, что светильник будет нагреваться, вариант с целлофановым пакетом исключаем сразу.

Читайте также  Курс arduino - моторы

Оптимальные материалы для светорассеивателя:

  • силикатное стекло;
  • поликарбонат;
  • акриловое стекло;
  • полистирол.

Светопропускающая способность материалов (прозрачных)

Можно было бы купить уже готовый материал с матовым оттенком, но не всегда это даст приемлемый результат. Даже у заводских рассеивателей светопропускающая способность находится в диапазоне 60-90%. Это вызвано отражением светового пока. Чем толще рассеиватель, тем выше вероятность, что свет попадет «не по назначению».

Уменьшение толщины материала не лучшим образом скажется на прочности и долговечности. Надёжный светорассеиватель для светодиодов своими руками можно изготовить из прозрачных материалов сделав матовую фактуру у одной из поверхностей.

Как получить матовую поверхность

Матовая структура поверхности получается при матировании. Существует два вида матирования:

  • Химическое;
  • Механическое.

При химическом способе на поверхность наносят специальную пасту. Она разрушает кристаллическую структуру материала, образуя равномерный матовый слой.

  • Минимальные затраты времени;
  • Однородная структура поверхности
  • Относительно высокая стоимость паст;
  • При матировании выделяются токсические вещества.

Механический способ подразумевает обработку поверхности абразивным материалом, обычно мелким песком.

  • Быстрая равномерная обработка.
  • Требуется пескоструйный аппарат;
  • Малопригодно для домашних условий.

Самый простой и доступный способ сделать матовую поверхность – обработать стекло наждачной бумагой. Для силикатного стекла этот метод не подойдёт из-за высокой прочности материала, а поликарбонат и акриловое стекло отлично поддаются такой обработке. В качестве абразива используем только мелкую наждачку, при крупном зерне возможно появление царапин.

Для домашних светильников на основе маломощных элементов с низким тепловыделением возможно в качестве рассеивателя использовать обычную компрессную бумагу, наклеенную на внутреннюю поверхность стекла.

В большинстве случаев яркость осветительного прибора можно увеличить, применив светоотражающее покрытие. Самый высокий коэффициент светоотражения у серебра, затем идет алюминий. Именно из него делают отражающий слой для зеркал. Не особо уступает эти покрытиям обычная пищевая фольга и белая краска.

Отражатель для светодиода можно сделать, своими руками покрыв этими материалами монтажную плату для светодиодов, либо внутренность светильника. Такой несложный способ позволит без особых затрат увеличить светоотдачу на 10-15%.

Особенности, применение и инструкция по изготовлению светорассеивателя для светодиодной ленты

Чтобы придать световому потоку равномерность и направленность, необходимо к светильнику приставить характерную оптическую конструкцию. Для светодиодной ленты ее роль выполняет специальный рассеиватель. Однако, как правило, лед-полоски при продаже не дополняются такими устройствами – их нужно сделать самостоятельно или заказывать отдельно в зависимости от условий применения и параметров прибора освещения на их основе.

Рассмотрим, в чем заключается принцип работы такого приспособления и какова его функция, какие его виды существуют и где применяются, а также как изготовить их своими руками и какие материалы для этого потребуются.

Функция и принцип работы рассеивателя

Особенность led-ленты состоит в том, что световой поток от нее распространяется на угол не более 120 градусов. Это существенно ухудшает их практическую пользу. Чтобы исправить ситуацию, необходимо в непосредственной близости к лампам поставить материал, преломляющий и рассеивающий свет.

Именно эту функцию и выполняет светодиодный рассеиватель. Его внутренняя структура основана на неупорядоченном расположении частиц вещества. В результате свет при прохождении через такой материал значительно отходит от своей изначальной траектории – причем в разные стороны. От этого световой поток одновременно несколько слабнет и равномерно расширяется.

Обратите внимание! Увидеть и понять принцип работы рассеивателя для светодиодного светильника можно на следующем примере. Нужно положить сверху на лэд-ленту небольшой кусок матового целлофана. Световой поток от такой рассеивающей пленки сразу станет слегка приглушенным и равномерно распределенным по всей освещаемой площади.

Рассеиватель или диффузор, применяемый для светодиодных лент, состоит из двух основных элементов – корпуса и светопропускающей пластинки. У современных моделей первая часть устройства представлена в виде пластмассового, алюминиевого или нержавеющего профиля следующих форм:

  1. Угловая.
  2. П-образная.
  3. С-видная.

Его геометрия определяется прежде всего местом применения рассеивателя, видами кронштейнов для него, особенностями и условиями эксплуатации. В основание профиля приклеивается светодиодная лента, а затем сверху она закрывается прозрачным или матовым материалом. Первые применяются, когда требуется сильная подсветка каких-либо выделенных зон – например, витрин в магазине, вторые – когда требуется создать общее ненавязчивое освещение, например, в ресторане.

Существует также гибкий профиль для светодиодов. По сути это силиконовая трубка с возможностью размещения внутри нее лэд-полоски. Благодаря высокой пластичности им можно придавать любые формы, что актуально при оформлении сложного фигурного декора, рекламных вывесок, деревьев.

Применение

Область применения светодиодных рассеивателей достаточно широка:

  1. Специализированная подсветка в жилых помещениях книжных полок, кухонных рабочих зон, аквариумов, элементов интерьера.
  2. Дополнительное освещение особых зон в магазинах, торговых и выставочных центрах.
  3. Выделение важных областей в уличном оформлении, рекламных щитах, декорировании скверов, садов.
  4. Создание общего фона свечения в общественных заведениях.

С помощью цветных диодных лент и программного управления их параметрами декорируют помещения, витрины, элементы интерьера и экстерьера, сооружения и конструкции в честь различных мероприятий, событий и праздников.

Материалы для изготовления рассеивателя

Современный ассортимент готовых оптических материалов дает возможность любому желающему изготовить своими руками рассеиватель для светодиодной ленты. Среди наиболее подходящих вариантов выделяются:

  1. Акрил и оргстекло.
  2. Полистирол.
  3. Поликарбонат.

Рассмотрим их основные характеристики и особенности применения.

Акрил и оргстекло

Такие виды пластика, как акрил и оргстекло, характеризуются одинаковыми светорассеивающими способностями с традиционным стеклом (пропускают около 90% излучения). При этом они характеризуются максимальными антивандальными показателями и не трескаются от постоянной смены климатических условий, резкой смены температуры от плюс до минус шестидесяти и механических воздействий.

  1. Небольшой вес.
  2. Возможность обработки.
  3. Стойкость к УФ-излучению.
  4. Водонепроницаемость.
  5. Не токсичность.
  6. Не подверженность процессам старения.

Интересно! Среди недостатков выделяется горючесть при прямом контакте с огнем и малое сопротивление при больших ударных нагрузках.

Полистирол

Один из термопластичных полимеров – отличается высокой, большей чем у стандартного стекла светопропускающей способностью (около 98%). Полистирол универсален и хорошо обрабатывается, устойчив к термическим изменениям и точечным сильным ударам.

Главными его преимуществами являются низкая стоимость и существенное цветовое разнообразие – от полностью прозрачного до насыщенного яркого оттенка. Однако в целом пластина такого материала достаточно хрупка и может воспламеняться при открытом воздействии огня.

Поликарбонат

Характерными свойствами поликарбоната являются прочность, малый вес и хорошая светопропускная способность. На практике рассеивателю для светодиодных лент из такого материала не страшны контакты с открытым огнем, обвал шквального ветра, ливневый дождь, град и удары вандалов. При этом по структуре он различается на два подвида:

  1. Ячеистый.
  2. Монолитный.

Первый отличается небольшим весом, второй максимальной прочностью и стойкостью к внешним воздействиям. При этом поликарбонат дороже всех вышерассмотренных материалов.

Рекомендация! При выборе материала для изготовления рассеивателя для светодиодных лент нужно учитывать условия применения. Так для домашнего использования лучше подойдут акрил и полистирол, а для улицы и общественных мест – поликарбонат.

Изготовление рассеивателя своими руками

Быстро изготовить своими руками недорогой рассеиватель для светодиодной ленты можно, следуя следующей инструкции:

  1. Подбирается металлический или пластиковый профиль подходящей длины и ширины. Например, можно взять пластиковый короб под проводку.
  2. Отрезается заданный отрезок.
  3. Вырезается по габаритам профиля пластинка одного из вышерассмотренных материалов.
  4. Наждачкой зачищается его поверхности для придания им матовой структуры (если рассеиватель нужен прозрачный, этот шаг пропускается).
  5. Короб-профиль просверливается для крепления, внутрь приклеивается светодиодная лента с уже припаянной или законнектеренной проводкой.
  6. Профиль монтируется на штатив, стену, потолок, полку и другое место назначения.
  7. Далее приклеивается на суперклей сам рассеиватель (как вариант, его можно прикрутить на небольшие шурупы через заранее рассверленные отверстия). Края короба при этом можно предварительно подогнуть, чтобы увеличить площадь контакта и надежность крепления стекла или пластика.
Читайте также  Радиоэлементы из старой аппаратуры

Повысить светоотдачу светильника с рассеивателем на базе светодиодной ленты можно, покрасив внутреннюю поверхность его профиля белой или серебристой краской.

Основные выводы

Рассеиватель делает более равномерным освещение светодиодной ленты и улучшает практический и эстетический эффект подсветки. Устройство состоит из двух основных частей – корпуса и светопропускающей пластины. Для первого применяются металлические или пластиковые профиля Г-, П- и С-образного типа, для второго используются акрил, оргстекло, полистирол и поликарбонат. У каждого из них есть свои особенности.

Сфера применения рассеивателя для светодиодных лент широка:

  1. Подсветка жилых помещений.
  2. Освещение общественных заведений.
  3. Выделение витрин, рекламных щитов.

Изготовить устройство можно своими руками. Для этого потребуется пластиковый или металлический короб, лед-полоска, проводка и одна из рассмотренных светорассеивающих основ.

Если вам знаком другой интересный вариант рассеивателя для светодиодных лент и способ его самостоятельного изготовления, обязательно поделитесь этим в комментариях.

Как сделать рассеиватели света для светильников

Сегодня многие осветительные приборы оснащены рассеивателями. С их помощью обеспечивается формирование светового потока необходимого качества.

Многие лампы, которые продаются сегодня в магазинах осветительных приборов, уже оснащены такими элементами. Но при желании любой человек может попробовать сделать такой элемент своими руками. Так вы не только проведете время с интересом и пользой, но и сможете оснастить любые домашние светильники подобного рода дополнением. И не надо будет бежать в магазин.

Небесполезная деталь

Любые осветительные приборы создают световой поток определенного уровня. Но его можно изменить. Для этих целей и был изобретен рассеиватель. С его помощью можно смоделировать световой поток и сделать освещение более мягким. Наиболее часто рассеиватель используется для модуляции освещения, исходящего от современных экономичных лампочек (светодиодные, люминесцентные, галогеновые и т.д.), вкрученных в светильники.

Светодиодная лампа с рассеивателем

Особое внимание следует уделить светодиодным осветительным приборам. Светодиод дает узконаправленный и чистый свет. Поэтому смотреть на него будет не слишком комфортно. Поэтому такая ситуация подлежит исправлению с помощью рассеивателей. Это нужно делать еще и потому, что такие рекомендации прописаны в СНиП.

Обратите внимание! Исключение в плане модуляции светового потока до оптимального уровня составляют только уличные фонари, а также подсветка архитектурных сооружений.

Рассеиватель в светодиодных светильниках обязан выполнять следующие функции:

  • обеспечивать защиту светодиодов (или другого источника света) от воздействий окружающей среды;
  • создавать для глаз комфортное и правильное распределение светового потока, испускаемого лампочкой;
  • повышать долговечность осветительного изделия;
  • повышать стойкость прибора к различного рода химическим воздействиям.

Как видим, невозможно произвести обычную замену люминесцентной лампочки на светодиодный источник света. Здесь обязательно возникает необходимость дополнительно установить рассеиватель. В результате вы своими руками получите экономичный, модернизированный и безвредный светильник, свет которого подходит для комфортного пребывания в помещении во время его работы.
Для многих светильников (например, марки Армстронг, Опал и т.д.) данный элемент изготавливают из оргстекла. Из этого же материала рассеиватель вполне можно изготовить и своими руками в домашних условиях.

Материал для работы

На сегодняшний день существует большое разнообразие материалов, из которых своими руками можно изготовить такой элемент как рассеиватель. Как правило, его необходимо делать для светодиодных типов светильников марки Армстронг, Опал и т.д.
В перечень материалов, пригодных для изготовления рассеивателя, входят:

    поликарбонат. Способен выдерживать достаточно высокую температуру, поэтому считается менее пожароопасным чем, к примеру, акриловое стекло. Кроме этого он способен выдержать различные механические воздействия без всяких последствий для осветительного прибора. Из поликарбоната делают призматические модели рассеивателей. Чтобы повысить прочность используют монолитный поликарбонат. Этот материал будет в несколько раз прочнее стекла;

Обратите внимание! Стойкость к старению очень актуальна для светодиодных светильников, так как этот источник света также имеет один из наиболее продолжительных периодов эксплуатации (свыше 50 тыс. часов). Особенно часто такие рассеиватели встречаются на лампах Опал и Армстронг.

  • полистирол. Этот материал также обладает всеми необходимыми свойствами для того, чтобы из него были изготовлены рассеиватели.

Все перечисленные выше материалы представляют собой альтернативу для стандартного силиконового стекла. Они успешно используются в качестве рассеивателя для всех светильников светодиодного типа (Опал, Армстронг и другие). При правильном подходе из любого материала, указанного выше, можно изготовить своими руками качественный рассеиватель.

Что нужно знать

Если вы решили своими руками соорудить рассеиватель для светодиодного типа осветительного прибора (Армстронг, Опал и т.д.), необходимо выбрать не только материал для изготовления, но и определиться с другими параметрами:

  • цвет;
  • структура поверхности;
  • форма.

Рассеиватель для светильников, выполненный своими руками, будет иметь различные варианты конструкции, отличаясь по цвету, форме и своей структуре.

Эти элементы конструкции светильника могут различаться в зависимости от типа монтажа:

  • на накладной корпус лампы;
  • на подвесных потолках;
  • универсальный.

Кроме этого отдельную группу составляют светорассеиватели, предназначенные для установки на фары различных транспортных средств, а также не стандартные осветительные приборы.
Конструкция светорассеивателей может быть следующей:

  • с матовой поверхностью. Это самая дорогая модель. Их особенностью является пропускание через себя чуть более половины светового потока (примерно 60 %). В результате свет становится более мягким, теплым, что повышает его комфортность для глаз;
  • с призматической структурой. Здесь происходит пропускание почти всего светового потока (до 90%). Это возможно благодаря рифленой поверхности и прозрачности материала. В результате свет преломляется о рифленую поверхность, что позволяет рассеивать свет по всему пространству помещения.

Теперь, когда мы выяснили все важные моменты строения и работы светорассеивателя, можно приступать и к описанию его изготовления.

Делаем самостоятельно

Чтобы изготовить светорассеиватель, вам понадобится исходный материал из вышеприведенного перечня. Кроме этого нужны будут и инструменты:

  • резак;
  • стеклорез;
  • нихромовая нить;
  • дрель с набором сверл для работы с различными типами стекол;
  • строительный фен.

Обратите внимание! Выбор материала и инструментов зависит от того, какой конечный результат вы хотите получить.

Также вам необходим будет постоянный источник света для проверки готового самодельного изделия.
Процедура изготовления состоит и таких последовательных операций:

  • выбираем матовое или прозрачное стекло;
  • вырезаем из исходного материала светорассеиватель нужного нам диаметра. Размер этого элемента определяется габаритами осветительного прибора. А если быть точнее – плафоном и источником света;

Вырезам из стекла

Теперь осталось закрепить светорассеиватель на светильнике. Для крупных ламп, типа Армстронг, данный элемент прикрепляют к алюминиевым профилям. Каркас из профиля может иметь круглую или прямоугольную форму. Первый тип часто используется для домашних светильников и автомобильных фар, а вот второй вариант – для офисных помещений и коридоров.

Для уличных светильников важно сделать такой рассеиватель, чтобы он выдерживал различные климатические условия места своей эксплуатации.
Как видим, сделать светорассеиватель для светодиодного типа осветительных приборов не так уж сложно. Здесь главное определиться с типом исходного материала, а также с конечным результатом, какой свет вам необходимо сделать — рассеянный или приглушенный. После этого дело остается за малым.

Построение компактных коллиматоров для мощных светодиодов

Введение

Характеристики мощных светодиодов

Мощные светодиоды имеют большой угол обзора. Популярные светодиоды компании CREE не являются исключением. Вот, например, характеристики светодиода XP-E2 [5].

• Размер 3,45 х 3,45 x 2.08 мм
• Цвет Белый
• Максимальный ток 1 A
• Максимальная мощность 3 Вт
• Максимальный световой поток 283 лм
• Номинальное прямое напряжение 2.9 V Белый @ 350 мА
• Максимальное обратное напряжение 5 В
• Угол обзора 110°

Коллиматоры

Существует множество вариантов коллиматоров, собирающих расходящееся излучение в зоне наблюдения. Среди них можно выделить линзы (преломляющие свет), отражатели и составные коллиматоры, состоящие из линз, преломляющих поверхностей и отражателей (Рис. 1, Рис. 2).

Требуемое равномерное освещение объекта или другое распределение освещенности достигается применением специальных материалов, рассеивающих поверхностей и корректировкой форм элементов коллиматора и их расположения.


Рис. 1. Примеры структур коллиматоров светодиодов [1,2,3,4].


Рис. 2. Геометрия демонстрационных моделей среды проектирования оптических устройств LightTools.

Распределения лучей отражателя

Профиль отражателей вычисляется с учетом угла обзора и диаграммы направленности светодиода, размера объекта и расстояния до него, а также и требуемого распределения освещенности объекта.

Некоторые варианты распределения лучей светодиода на поверхности объекта показаны на Рис. 3.


Рис. 3. Варианты распределения лучей в зоне объекта. A — фокусировка в центральной точке; B, D — слабые лучи (см. диаграмму направленности) собираются на периферии зоны объекта, сильные — в центре (для усиления интенсивности центральной зоны); варианты С и E собирают слабые лучи в центе, а сильные — на периферии (для выравнивание интенсивности засветки).

Расчет профилей отражателя

Расчет профиля отражателя, фокусирующего лучи точечного источника (Рис. 3, вариант А), можно выполнить без использования специальных сред для разработки оптических систем.


Рис. 4. Распределение прямых и фокусируемых лучей (на этом рисунке слева, Рис. 3, вариант А) и диаграмма расчета профиля отражателя точечного источника (справа).

Далее, приведена программа расчета и построения профиля отражателя (Рис. 5) в среде МАТЛАБ с использованием построений Рис. 4.


Рис. 5. Профили отражателей излучения точечных источников с углом обзора 180, 120, 60 и 20 град для освещения 50 мм объекта, расположенного на расстоянии 300 мм от источника.

Диаграмма расчета профиля отражателя В (Рис. 3) показана на Рис. 6.


Рис. 6. Диаграмма расчета профиля отражателя лучей точечного источника: «Слабые» — периферийные лучи (диаграммы направленности светодиода) идут к границам объекта, «Сильные» центральные лучи собираются в центре объекта (Рис. 3, вариант В).


Рис. 7. Профили 6 мм отражателей (слева) и углы отражаемых лучей (справа). Здесь, углы рассчитаны относительно плоскости источника. Так, углу 30о соответствует угол обзора 120о = 2*(90о -30о). Соответственно, минимальный угол прямых лучей (не касающихся отражателя) равен 50о, как 2*(90о — 65о ).

Сравнительные профили отражателей вариантов A,B,C,D,E (Рис. 3) показаны на Рис. 7. Максимальный диаметр отражателей ограничен 6 мм.

Сравнение профилей (Рис. 7) и распределение лучей (Рис. 3) показывает, что длина коллиматоров и диапазон собираемых лучей максимальны для вариантов D и E. Коллиматор Е обеспечивает лучшую равномерность освещения объекта, чем коллиматор D. Коллиматор В имеет наибольшую зону для размещения линзы, которая соберёт лучи не коснувшиеся отражателя. Угол расхождения прямых лучей прошедших внутри отражателя В составляет 60 градусов (как 90-60*2).

Составной компактный коллиматор

Составной коллиматор включает отражатель, ограниченного размера, и линзу, которая фокусирует лучи не собранные отражателем. Пакеты программ LightTools или TracePro используются для расчета коллиматоров с отражателями и линзами. Расчет линзы может быть выполнен отдельно, например, в среде Zemax или Code V.


Рис. 8. Структуры компактного коллиматора из органического стекла ПММА (вверху) и коллиматора со вставной линзой из стекла BK7 (внизу) для освещения 50 мм объектов с расстояния 300 мм. Расчёт отражающей поверхности выполнен в МАТЛАБ, для расчёта линзы использовалась среда Zemax.


Рис. 9. Результаты расчета линзы коллиматора Рис. 8. в Zemax.

Построение отражателя в LightTools

Пакет программ LightTools позволяет выполнить расчет коллиматоров и оптимизировать их параметры в автоматическом режиме.

Результаты расчета в среде LightTools профиля оптимального отражателя без ограничения его размеров для освещения 50 мм объекта, удаленного от светодиода XP-E2 на 300 мм, показаны на Рис. 10. Профиль отражателя описан кривой Безье (Bezier) [6]. Модель светодиода XP-E2 взята из библиотеки LightTools. Оптимальные выходной диаметр и длина модели коллиматора составили 12.9 и 18.9 мм соответственно.


Рис. 10. Размеры и эффективность отражателя Ø12.9 x 18.9 мм. Эффективность 17.5% определяется отношением количества лучей достигших объекта к количеству лучей испускаемых источником.

Ограничение диаметра отражателя 6.2 мм привело к снижению его эффективности с 17.5% до 5,6% (Рис. 11). Это связано, в основном, с тем, что с уменьшением площади отражения возросло количество прямых лучей светодиода не попадающих в зону объекта.


Рис. 11. Характеристики освещенности и параметры оптимального отражателя, собирающего лучи светодиода XP-E2 в диапазоне 69… 103 град. Максимальный диаметр отражателя ограничен 6.2 мм. Эффективность коллиматора

Уточненная модель светодиода отличается от точечного источника тем, что излучение формируется множеством точечных источников, распределенных по всей поверхности диода, например, в зоне 1 х 1 мм для XP-E2. Углы обзора и диаграммами направленности всех источников равны.

Профиль отражателя излучения распределенного источника (Рис. 12) отличается от профиля отражателя для сосредоточенного источника (Рис. 11), однако их эффективности (


Рис. 12. Оптимальные параметры LightTools отражателя излучения распределенного источника XP-E2. Максимальный диаметр отражателя ограничен 6.2 мм. Эффективность коллиматора

Сравнение профилей отражателей, расcчитанных в МАТЛАБ и LightTools

Профили отражателей, показанные Рис. 13, рассчитаны в МАТЛАБ (профили: A,B,C,D,E) и LightTools (профили: LT point, LT dist, LT unlim). В МАТЛАБ выполнен ручной расчет для точечных источников. В LightTools оптимизация профилей выполнена в автоматическом режиме для точечного и распределенного источников с ограничением (6.2 мм) и без ограничения диаметра отражателя для равномерного освещения 50 мм объекта, удалённого от источника на 310 мм.


Рис. 13. Профили отражателей: A, B, C, D, E — ограниченного диаметра (6 мм), рассчитаны в МАТЛАБ для точечного источника; LT point — ограниченного диаметра (6.2 мм), рассчитан в LightTools для точечного источника; LT dist — ограниченного диаметра (6.2 мм), раcсчитан в LightTools для распределенного источника; LT unlim — свободного размера, расcчитан в LightTools для точечного источника.

Алгоритмы оптимизации параметров в LightTools скрыты от пользователя. Для понимания алгоритма оптимизации LightTools, который использовался при расчете профиля «LT dist» (Рис. 13) построено распределение лучей в МАТЛАБ (Рис. 14).


Рис. 14. Ход лучей распределенного источника отражаемых в зону 50 мм с расстояния 310 мм, общая диаграмма (слева), увеличенный фрагмент (справа). Рассматривается излучение от краёв (голубые и зеленые линии) и центра (красные линии) распределенного источника. Разделение краевых и центрального пучков 1х1 мм источника достигается смещениями отражателя на ±0.5 мм.

Распределение лучей (Рис. 14) показывает, что оптимизация LightTools нашла профиль отражателя для центрального точечного источника с освещением 1/3 зоны объекта и использовала этот профиль для освещения всей зоны объекта источниками излучения, распределенными на площади светодиода 1х1 мм.

Код МАТЛАБ для вычисления массива точек оптимального профиля отражателя — кривой Безье (‘Besier_profile_dist_source.mat’), заданной параметрами LightTools Bezier_WX Bezier_Relative_UX и Bezier_VX:

Ручной расчет коллиматора

Для выполнения ручных расчетов отражателя распределенного источника необходимо:

1. Найти координаты точки отражателя, ближайшей к источнику.
2. Рассчитать профиль отражателя (см. алгоритм раздела Расчет профилей отражателя) для уменьшенной зоны объекта, например, 1/3.

Через начальную точку отражателя, ближайшую к источнику, должны проходить лучи, испускаемые всеми точками плоскости светодиода. Прямые лучи, проходящие через начальную точку, должны освещать зону соразмерную с объектом, находящимся на требуемом расстоянии от источника.


Рис. 15. Построение лучей для поиска начальной точки отражателя. Зоны располагаются на окружности радиусом 310 мм (правый рисунок) равном расстоянию до объекта. На левом рисунке показано увеличенное изображение с поверхностью светодиода радиусом 1,5 мм.

Положению начальной точки отражателя соответствует точка 1 на поверхности светодиода радиусом 1.5 мм (Рис. 15) через которую проходят крайние (L и R) и центральный © лучи распределенного излучателя в зону

50 мм, отстоящую от источника на 310 мм.
Угол обзора рассчитанного коллиматора с отражателем можно уменьшить, включив в структуру коллиматора линзу, как показано на Рис. 8.