Как сделать светодиод тусклее?

Как приглушить свет лампочки

Как приглушить свет лампочки

Решения

Паста

Чем покрасить лампочку в синий цвет? Самое простое решение — использовать пасту из шариковой ручки.

Как это сделать?

  1. Вытаскиваем из стержня наконечник с шариком.
  2. Выдуваем содержимое стержня на лист бумаги.
  3. Держа лампочку за цоколь, натираем ее колбу пастой.

В журналах «Техника молодежи» 30-летней давности можно было встретить продвинутый способ окраски: паста разводилась в ацетоне и наносилась на колбу кистью. В этом случае легче контролировать насыщенность цвета; однако жидкий краситель довольно трудно нанести на гладкую поверхность стекла.

В качестве растворителя для пасты можно использовать не только ацетон, но и этиловый спирт или одеколон.

Лак для ногтей

Быстросохнущий лак для ногтей можно использовать в качестве краски, если вы собираетесь покрасить маломощную лампу накаливания или одну из эконом-лампочек (люминесцентную или светодиодную). Увы, при температуре более 200 градусов он выгорает. Нанести лак несложно идущей в комплекте с тюбиком кистью или тампоном из ватного диска.

Стойкий полупрозрачный лак для ногтей вполне подойдет для наших целей.

В вашем распоряжении есть только бесцветный лак? Нет проблем: все та же паста из шариковой ручки поможет окрасить его.

Окрашенный клей ПВА тоже может быть нанесен на умеренно греющиеся источники света. В качестве красителя можно использовать чернила для струйного принтера или любые водорастворимые пигменты. При высыхании белый клей становится прозрачным.

Автоэмаль

Инструкция, которая может оказаться полезной автолюбителям: автомобильные эмали, продающиеся в аэрозольных баллонах, тоже подходит для лампочек с температурой колбы до 200 градусов. Распылять эмаль лучше с расстояния не меньше 30-40 сантиметров: слишком толстый слой краски может сделать колбу непрозрачной.

Витражные краски

Красители, предназначенные для создания витражей, идеально подойдут для наших целей. Но не все: нам нужны водорастворимые краски под обжиг. При нагреве они не горят, а, напротив, становятся более прочными.

Недостаток решения — довольно высокая стоимость красителей: 50-граммовый тюбик обходится в 150 — 200 рублей.

Кремнийорганика

Кремнийорганические краски предназначены именно для окрашивания поверхностей, эксплуатирующихся при высоких температурах. Верхняя граница рабочего диапазона достигает 600 градусов, что позволяет не опасаться выгорания даже на самых горячих источниках света.

Нюанс: чтобы покрытие было прозрачным, эмаль придется развести.
Тип разбавителя всегда указывается на упаковке; так, для отечественной КО-813 можно использовать растворитель №646, ксилол или сольвент.

На фото — кремнийорганическая эмаль КО-813.

Цапонлак

Наконец, для покраски можно использовать цапонлак, который несложно найти в магазинах радиодеталей. Его основная функция — защита дорожек и пайки на платах от коротких замыканий. (См. также статью Глянцевая краска: особенности.)

Что входит в состав?

  • Нитроцеллюлоза.
  • Растворитель (как правило, ацетон).
  • Опционально — органический краситель, позволяющий использовать лак для цветовой маркировки соединений и деталей.

Поскольку рабочая температура ключевых транзисторов в преобразователях питания может достигать 150 градусов, применяющийся для изоляции их выводов цапонлак волей-неволей должен быть термостойким.

Единственный недостаток цапонлака — ограниченность выбора цветов в большинстве магазинов. Чем покрасить лампочку в красный цвет, если в вашем распоряжении только прозрачный лак?

Придать ему нужную окраску несложно своими руками; способ нам уже знаком:

  1. Вскрываем стержень от шариковой ручки с красной пастой.
  2. Выдуваем пасту в бутылочку с лаком.
  3. Тщательно перемешиваем.
  4. Наносим.

Цапонлак окрашивается в нужный цвет пастой из шариковой ручки.

В рамках небольшой статьи нами перечислены лишь наиболее простые и доступные решения. Вполне возможно, что читателю придет в голову какая-нибудь свежая идея, не вошедшая в наш список. (См. также статью Краска для пластика: особенности.)

Как всегда, видео в этой статье предложит вашему вниманию дополнительную тематическую информацию. Успехов!

Понравилась статья? Подписывайтесь на наш канал Яндекс.Дзен

Светодиоды и ленты

Обычные светодиоды

Светодиод – простейший индикатор, который можно использовать для отладки кода: его можно включить при срабатывании условия или просто подмигнуть. Но для начала его нужно подключить.

Подключение светодиода

Светодиод – это устройство, которое питается током, а не напряжением. Как это понимать? Яркость светодиода зависит от тока, который через него проходит. Казалось бы, достаточно знания закона Ома из первого урока в разделе, но это не так!

  • Светодиод в цепи нельзя заменить “резистором”, потому что он ведёт себя иначе, нелинейно.
  • Светодиод полярен, то есть при неправильном подключении он светиться не будет.
  • Светодиод имеет характеристику максимального тока, на котором может работать. Для обычных 3 и 5 мм светодиодов это обычно 20 мА.
  • Светодиод имеет характеристику падение напряжения (Forward Voltage), величина этого падения зависит от излучаемого цвета. Цвет излучается кристаллом, состав которого и определяет цвет. У красных светодиодов падение составляет

2.5 вольта, у синих, зелёных и белых

3.5 вольта. Более точную информацию можно узнать из документации на конкретный светодиод. Если документации нет – можно пользоваться вот этой табличкой, тут даны минимальные значения:

Если питать светодиод напряжением ниже его напряжения падения, то яркость будет не максимальная, и здесь никаких драйверов не нужно. То есть красный светодиод можно без проблем питать от пальчиковой батарейки. В то же время кристалл может деградировать и напряжение уменьшится, что приведёт к росту тока. Но это редкий случай. Как только мы превышаем напряжение падения – нужно стабилизировать питание, а именно – ток. В простейшем случае для обычного светодиода ставят резистор, номинал которого нужно рассчитать по формуле: R = (Vcc — Vdo) / I , где Vcc это напряжение питания, Vdo – напряжение падения (зависит от светодиода), I – ток светодиода, а R – искомое сопротивление резистора. Посчитаем резистор для обычного 5 мм светодиода красного цвета при питании от 5 Вольт на максимальной яркости (2.5 В, 20 мА): (5-2.5)/0.02=125 Ом. Для синего и зелёного цветов получится 75 Ом. Яркость светодиода нелинейно зависит от тока, поэтому “на глаз” при 10 мА яркость будет такая же, как на 20 мА, и величину сопротивления можно увеличить. А вот уменьшать нельзя, как и подключать вообще без резистора. В большинстве уроков и проектов в целом для обычных светодиодов всех цветов ставят резистор номиналом 220 Ом. С резистором в 1 кОм светодиод тоже будет светиться, но уже заметно тусклее. Таким образом при помощи резистора можно аппаратно задать яркость светодиода. Как определить плюс (анод) и минус (катод) светодиода? Плюсовая нога длиннее, со стороны минусовой ноги бортик чуть срезан, а сам электрод внутри светодиода – крупнее:

Мигаем

Мигать светодиодом с Ардуино очень просто: подключаем катод к GND, а анод – к пину GPIO. Очень многие уверены в том, что “аналоговые” пины являются именно аналоговыми, но это не так: это обычные цифровые пины с возможностью оцифровки налогового сигнала. На плате Nano пины A0-A5 являются цифровыми и аналоговыми одновременно, а вот A6 и A7 – именно аналоговыми, то есть могут только читать аналоговый сигнал. Так что подключимся к A1, настраиваем пин как выход и мигаем!

Как избавиться от delay() в любом коде я рассказывал вот в этом уроке. https://www.youtube.com/watch?v=uaiLcCd9Tnk

Мигаем плавно

Как насчёт плавного управления яркостью? Вспомним урок про ШИМ сигнал и подключим светодиод к одному из ШИМ пинов (на Nano это D3, D5, D6, D9, D10, D11). Сделаем пин как выход и сможем управлять яркостью при помощи ШИМ сигнала! Читай урок про ШИМ сигнал. Простой пример с несколькими уровнями яркости:

Подключим потенциометр на A0 и попробуем регулировать яркость с его помощью:

Как вы можете видеть, все очень просто. Сделаем ещё одну интересную вещь: попробуем плавно включать и выключать светодиод, для чего нам понадобится цикл из урока про циклы.

Плохой пример! Алгоритм плавного изменения яркости блокирует выполнение кода. Давайте сделаем его на таймере аптайма.

Теперь изменение яркости не блокирует выполнение основного цикла, но и остальной код должен быть написан таким же образом, чтобы не блокировать вызовы функции изменения яркости! Ещё одним вариантом может быть работа по прерыванию таймера, см. урок.

Ещё один момент: если подключить светодиод наоборот, к VCC, то яркость его будет инвертирована: 255 выключит светодиод, а 0 – включит, потому что ток потечет в другую сторону:

Светодиодные ленты

Светодиодная лента представляет собой цепь соединённых светодиодов. Соединены они не просто так, например обычная 12V лента состоит из сегментов по 3 светодиода в каждом. Сегменты соединены между собой параллельно, то есть на каждый приходят общие 12 Вольт. Внутри сегмента светодиоды соединены последовательно, а ток на них ограничивается общим резистором (могут стоять два для более эффективного теплоотвода): Таким образом достаточно просто подать 12V от источника напряжения на ленту и она будет светиться. За простоту и удобство приходится платить эффективностью. Простая математика: три белых светодиода, каждому нужно по

3.2V, суммарно это 9.6V. Подключаем ленту к 12V и понимаем, что 2.5V у нас просто уходят в тепло на резисторах. И это в лучшем случае, если резистор подобран так, чтобы светодиод горел на полную яркость.

Подключаем к Arduino

Здесь всё очень просто: смотрите предыдущий урок по управлению нагрузкой постоянного тока. Управлять можно через реле, транзистор или твердотельное реле. Нас больше всего интересует плавное управление яркостью, поэтому продублирую схему с полевым транзистором: Конечно же, можно воспользоваться китайским мосфет-модулем! Пин VCC кстати можно не подключать, он никуда не подведён на плате.

Управление

Подключенная через транзистор лента управляется точно так же, как светодиод в предыдущей главе, то есть все примеры кода с миганием, плавным миганием и управление потенциометром подходят к этой схеме. Про RGB и адресные светодиодные ленты мы поговорим в отдельных уроках.

Питание и мощность

Светодиодная лента потребляет немаленький ток, поэтому нужно убедиться в том, что выбранный блок питания, модуль или аккумулятор справится с задачей. Но сначала обязательно прочитайте урок по закону Ома! Потребляемая мощность светодиодной ленты зависит от нескольких факторов:

  • Яркость. Максимальная мощность будет потребляться на максимальной яркости.
  • Напряжение питания (чаще всего 12V). Также бывают 5, 24 и 220V ленты.
  • Качество, тип и цвет светодиодов: одинаковые на вид светодиоды могут потреблять разный ток и светить с разной яркостью.
  • Длина ленты. Чем длиннее лента, тем больший ток она будет потреблять.
  • Плотность ленты, измеряется в количестве светодиодов на метр. Бывает от 30 до 120 штук, чем плотнее – тем больший ток будет потреблять при той же длине и ярче светить.

Лента всегда имеет характеристику мощности на погонный метр (Ватт/м), указывается именно максимальная мощность ленты при питании от номинального напряжения. Китайские ленты в основном имеют чуть меньшую фактическую мощность (в районе 80%, бывает лучше, бывает хуже). Блок питания нужно подбирать так, чтобы его мощность была больше мощности ленты, т.е. с запасом как минимум на 20%.

    Пример 1: нужно подключить 4 метра ленты с мощностью 14 Ватт на метр, лента может работать на максимальной яркости. 14*4 == 56W, с запасом 20% это будет 56*1.2

70W, ближайший блок питания в продаже будет скорее всего на 100W.

  • Пример 2: берём ту же ленту, но точно знаем, что яркость во время работы не будет больше половины. Тогда можно взять блок на 70 / 2 == 35W.
  • Важные моменты по току и подключению:

    • Подключение: допустим, у нас подключено ленты на 100W. При 12 Вольтах это будет 8 Ампер – весьма немаленький ток! Ленту нужно располагать как можно ближе к блоку питания и подключать толстыми (2.5 кв. мм и толще) проводами. Также при создании освещения есть смысл перейти на 24V ленты, потому что ток в цепи будет меньше и можно взять более тонкие провода: если бы лента из прошлого примера была 24-Вольтовой, ток был бы около 4 Ампер, что уже не так “горячо”.
    • Дублирование питания: лента сама по себе является гибкой печатной платой, то есть ток идёт по тонкому слою меди. При подключении большой длины ленты ток будет теряться на сопротивлении самой ленты, и чем дальше от точки подключения – тем слабее она будет светить. Если требуется максимальная яркость на большой длине, нужно дублировать питание от блока питания дополнительными проводами, или ставить дополнительные блоки питания вдоль ленты. Дублировать питание рекомендуется каждые 2 метра, потому что на такой длине просадка яркости становится заметной уже почти на всех лентах.
    • Охлаждение: светодиоды имеют не 100% КПД, плюс ток в них ограничивается резистором, и как результат – лента неслабо греется. Рекомендуется приклеивать яркую и мощную ленту на теплоотвод (алюминиевый профиль). Так она не будет отклеиваться и вообще проживёт гораздо дольше.

    Видео


    Как регулировать яркость и цвет светодиодных ламп? 6 готовых решений

    Содержание

    Типы светодиодного освещения

    Прежде чем говорить про регулировку работы светодиодов, нужно разобраться, какие они бывают и как подключаются к сети. Это важно как на этапе выбора осветительных приборов, например, если у вас новая квартира и вы только подбираете лампочки, так и при наличии готовой системы освещения. Вы поймете, какой вариант вам подходит и какие дополнения могут потребоваться.

    Для справки: светодиоды могут изменять яркость свечения при изменении силы тока. Регулировать этот ток нужно при определенном значении напряжения.

    Лампочки с рабочим напряжением 220 В

    Это светодиодные лампочки, например, с цоколем Е14 и Е27, которые устанавливаются в светильники, бра, люстры, напрямую подключенные к сети 220 В. Но не все могут менять свечение – нужны диммируемые лампы, о которых мы расскажем во втором блоке статьи.

    Светодиоды с напряжением 12 – 24 В

    Такие источники света используются в потолочных светильниках, споттерах и других приборах с цоколем, например, G4, GX57, G5.3. Низковольтными считаются светодиодные LED-ленты, для их работы используется драйвер. Управление осуществляется через контроллер, о котором мы расскажем далее – в числе готовых решений.

    Готовые решения

    Мы собрали самые популярные товары на рынке осветительных устройств. С их помощью вы сможете управлять интенсивностью и цветовым оттенком ламп. У нас получился список из 6 пунктов.

    1. Для плавного изменения яркости диммером

    Диммируемые лампочки – это светоизлучающие устройства с плавно изменяемой интенсивностью светового потока. Для регулировки нужно дополнительное приспособление – диммер. Он может устанавливаться на место выключателя, если нужно регулировать освещение встроенных электроосветительных приборов. В светильниках и бра может быть предусмотрен регулятор с вращающимся колесиком – тот же диммер, но установленный непосредственно на проводе к осветительному прибору.

    Современные диммеры могут иметь поворотный, нажимной или поворотно-прижимной регулятор. Есть модели, которыми можно управлять дистанционно – с пульта или звуковыми командами. При выборе стоит обратить внимание на максимально допустимую мощность подключаемых лампочек. Например, ее значение может составлять 300, 400 или 600 Вт.

    2. Для шаговой регулировки яркости

    В этом сегменте вы найдете диммируемые лампочки с маркировкой step dimmable. К примеру, такие есть у бренда Gauss. Интенсивность свечения у них меняется не плавно, а ступенчато. Диммер не нужен – достаточно серийного нажатия на обычный выключатель. С каждым щелчком яркость меняется.

    Например, запрограммированный цикл может быть таким: яркость 100% (максимальная) – яркость 75% – яркость 50% – яркость 20% (минимальная) – яркость 100% (максимальная) – далее по кругу.

    3. Для шаговой регулировки цветовой температуры

    Такое решение необходимо для многофункциональных помещений, которые в разные часы могут быть местом отдыха, работы, семейных встреч. Эту задачу решают лампы с регулировкой цветовой температуры между нейтральным (белым) и теплым (желтым) свечением. Изменение этого параметра осуществляется пошагово – при каждом нажатии на выключатель.

    4. Для шагового переключения между белым цветом и УФ-режимом

    Существуют бактерицидные лампы, которые выполняют две функции – освещение и обеззараживание помещения. Регулировка осуществляется так же, как у предыдущих шаговых устройств: при нажатии на выключатель можно выбрать нужный режим – освещение или стерилизация. За счет ультрафиолетового излучения уничтожается до 99% известных бактерий. В зависимости от мощности одна лампа способна охватить помещение площадью до 10 – 20 кв. м. Использовать ее рекомендуется в светильниках с открытым плафоном.

    5. Для шаговой регулировки цвета

    • Лампы RGB – имеют стандартный цоколь, например, Е14 или Е27, а переключение по цветам осуществляется при каждом нажатии на выключатель. К примеру, такие модели есть в ассортименте бренда Volpe. Их используют в качестве декоративной подсветки, дизайнерских решений и элементов оформления.
    • Светодиодные ленты RGB – встраиваются в конструкции подвесных потолков, ниш, кухонных гарнитуров. Эти источники света могут играть роль дополнительной и декоративной подсветки. Имеют низковольтное напряжение – 12 или 24 В, поэтому подключаются к сети через адаптер. Для смены режимов используется RGB-контроллер, управляемый с пульта. Как правило, наиболее удобным решением является покупка набора, в который входит все необходимое для подключения и работы такой системы.

    6. Для плавной регулировки яркости и цвета по Wi-Fi

    Такие решения используются в системе умного дома, которая позволяет управлять всеми процессами с мобильного телефона. К примеру, у производителя Gauss вышла серия для освещения – она называется «Умный свет» и включает в себя светодиодные лампы различной формы. Их можно объединять в группы через приложение и задавать настройки. Вы сами устанавливаете временной интервал диммирования – от 0 до 100 секунд. Для вашего комфорта предусмотрены световые режимы по расписанию, например, «Пробуждение» и «Перед сном». Можно задействовать режим «Отпуск» на время длительного отсутствия, чтобы создать иллюзию нахождения в доме людей.

    У бренда Rubetek тоже есть лампочки, светом которых можно управлять по Wi-Fi. Например, у модели RL-3103 меняется интенсивность и цвет – предусмотрено более 16 млн оттенков. Для работы надо скачать на телефон приложение rubetek. Вы сможете настраивать разные режимы и задействовать функцию «Имитация присутствия владельцев». Умная лампа синхронизируется с помощниками Сири и Алиса.

    Светодиодные лампы с Wi-Fi очень экономичны – они потребляют в 5 раз меньше энергии, чем лампы накаливания. А за счет снижения интенсивности яркости можно сэкономить еще больше электроэнергии.

    Все ваши плюсы

    Изменяемая яркость и цветность ламп – сравнительно новое решение на рынке освещения. И если лампочки, которые включаются по хлопку или датчику движения, есть даже в подъездах домов, то другие технологии остаются пока без внимания. А зря! Ведь управление освещением открывает массу возможностей.

    • Экономия – уменьшив интенсивность светового потока, можно снизить энергопотребление.
    • Функциональность – одну лампочку удается использовать для разных целей: работы, отдыха, чтения, дежурного освещения.
    • Комфорт – настраивайте свет так, как вам удобно: для расслабления и медитации или наоборот, для сосредоточенной деятельности.
    • Стиль – изменяемый оттенок или цвет может стать частью дизайнерского оформления жилых помещений, кафе, ресторанов, зон коворкинга, клубов и детских центров.
    • Шаг вперед – светодиодные технологии освещения используются в системах умного дома и синхронизируются с голосовыми помощниками.

    А какое решение для управления освещением выберете вы? Светодиодные технологии открывают массу возможностей! Выбирайте то, что нужно вам – в нашем каталоге.

    Переделал светодиодную лампочку. Теперь она служит в 3 раза дольше и светит ярче в 2 раза

    Да будет свет! Расскажу, как сделал светодиодную лампочку, которая служит 3 год и умирать не собирается. При этом светит в два раза ярче. Переделка очень простая. Расписываю в подробностях.

    Секрет долголетия светодиодных ламп

    Заметил такую штуку. Светодиодные лампочки позиционируются на рынке как самые надежные, экономичные и долговечные. Производители обещают, что они будут служить 10 лет. По факту работают они ровно до окончания срока гарантии. Хотя могли бы светить дольше.

    Китайцы экономят на всем, чем только можно – компонентах драйвера, светодиодах, материалах платы и корпуса. Как следствие, лампочки перегружаются и перегреваются. Светодиоды эксплуатируются в предельных режимах!

    Заметил я это, когда очередная лампочка перестала светить через год. Я решил ее разобрать и посмотреть, в чем проблема. Оказалось, что резисторы и конденсаторы подобраны так, чтобы светодиоды работали на всю свою мощь. Неудивительно, что один из них сгорел.

    Разборка

    Решено было продлить срок службы лампочки самым варварским способом. Начну сначала – с разборки.

    1. Берем острый нож. Надеваем перчатки, чтобы не порезаться.
    2. Кладем лампочку на стол.
    3. Вставляем лезвие ножа в микрощель между рассеивателем и средней частью лампы.
    4. Они соединены чем-то вроде герметика.
    5. Слегка надавливаем сверху на нож и перекатываем лампу.
    6. Пара минут, и герметик срезается, а плафон выходит из защелок средней части.
    7. Под крышкой покажутся последовательно подключенные светодиоды на плате.
    8. Откручиваем 2 винта, отпаиваем. Вырезаем по кругу термоклей.
    9. Достаем плату, поддев ножом.
    10. За ней находится драйвер, который можно вытащить пальцами. Собственно все, лампочка разобрана.

    Устроена она очень просто:

    Восстановление

    Сделать самому лампочку меня надоумило вот это видео:

    1. Находим сгоревший светодиод (или несколько).
    2. Обычно они отмечены черной точкой. В моем случае весь светодиод был выгоревший.
    3. Выкрашиваем погорельца ножом или отверткой.
    4. Капаем на оголившийся контакт флюсом и наносим капельку припоя.

    Таким образом мы восстанавливаем цепь и лампочка снова начинает работать. Но! Есть одна загвоздка. Напряжение после этого повышается, и светодиоды будут гореть один за другим. Возможно, лампочка проработает еще месяц. А может быть, только один день.

    Уменьшение тока

    Для того чтобы лампочка проработала максимально долго, нужно уменьшить ток. Для этого:

    1. Берем драйвер и определяем тип микросхемы.
    2. Ищем по даташиту описание.
    3. Выпаиваем низкоомный резистор с большим сопротивлением.

    После этого ток уменьшится практически в два раза. Да, лампочка перестанет светить так ярко, как раньше. Но дольше служить будет однозначно (может быть, и все 10 лет).

    Повышение яркости

    На этапе замены резистора можно было бы остановиться – собрать лампу обратно, приклеить (примотать скотчем) рассеиватель… Но мне свет показался недостаточно ярким. Стал вопрос, как это исправить. Я пошел самым простым путем.

    Чтобы увеличить яркость лампочки, взял старенький компакт-диск. Немного доработал и получил мощный отражатель.

    1. Расширил центральное отверстие диска. Для этого использовал столярное «перо» на 35. Можно прорезать отверстие любым другим подручным инструментом. Не суть.
    2. Приклеил плату со светодиодами к диску. Взял термоклей. Намазал его на отражающую сторону CD (по кругу отверстия). Прижал плату задней частью.
    3. Собрал лампочку в обратном порядке. Где нужно, контакты подпаиваем. Местами провода не меняем, даже если длина позволяет. Лампочка будет мерцать.
    4. Проклеил шов в месте прилегания корпуса к CD, чтобы конструкция получилась крепкой и не распалась. Рассеиватель выкинул.

    Итог. Из нерабочей светодиодной лампочки получился эдакий мини-прожектор. Смотреть на него некомфортно, но зато гараж освещен на все 200%! Конечно, для дома такой вариант не подойдет. Равно как и для улицы (сырых помещений). Там яркостью придется пожертвовать ради эстетики и безопасности.

    Предвижу, что многие скажут, а зачем вообще ремонтировать и продлять жизнь светодиодным лампам? Сегодня цена на них ну очень доступная. Выкинуть старую, и купить новую может позволить себе каждый. Но я из принципа решил выжать из нее максимум. Результатом доволен на все сто. В гараже светло как днем. За 3 года ни один светодиод не перегорел. Лампа стала ярче в два раза, и дольше служит уже в три раза (и это не предел)!

    Как доработать светодиодную лампочку и сделать её практически вечной

    Если вы хотите сэкономить на счёте за коммунальные услуги, то однозначно нужно заменить все лампы на светодиодные. На сегодняшний день это самый экономичный выбор. Потребление энергии снижается практически в 10 раз. Единственная проблема – в сроке эксплуатации этого прибора. Странно, но при заявленных больших сроках светодиодные лампы служат не так долго, как хотелось бы. И кто, скажите, отсчитывает 30 тысяч часов гарантии, а если прошло всего 26 тысяч – идёт с упаковкой менять лампу? Да точно никто, а этим и пользуются недобросовестные производители. А между тем есть не только способ своими руками починить светодиодный источник света, но и сделать его практически вечным.

    Почему перегорают светодиодные лампы

    Начнём с очевидного: выход светодиодного осветительного прибора из строя связан с его перегревом. «Какой перегрев, ‒ скажете вы, ‒ если это всего лишь светодиоды, которые практически не нагреваются?»

    Но посмотрите на корпус такой лампы: это герметичная конструкция из пластика.

    А помимо этого, производители ради привлечения покупательского спроса делают лампы всё мощнее, добавляя светодиоды, и чем их больше, тем хуже ситуация с перегревом. И даже специальные вентиляционные отверстия, которые делаются на некоторых моделях, не спасают ситуацию.

    Светодиодную лампу можно починить: как это сделать?

    Светодиодная лампа – ремонтопригодный прибор, и об этом знают немногие. Чтобы починить такую лампу, достаточно просто иметь обычный паяльник. Причина прекращения работы чаще всего заключается в том, что перегорает один из светодиодов. Он размыкает цепь, и не горят все остальные. Так что для ремонта достаточно исключить его из цепи.

    ФОТО: YouTube.com Внутри вы увидите несколько небольших светодиодов, соединённых в цепь. Один из них перегорел, нужно найти его

    ФОТО: YouTube.com Можно определить перегоревший светодиод визуально – на нём будет пятнышко или точка. А можно – с помощью простого самодельного тестера

    ФОТО: YouTube.com Собрать его несложно, взяв за основу источник питания для телефона или ноутбука

    ФОТО: YouTube.com Перегоревший светодиод нужно просто удалить и замкнуть контакт пайкой

    ФОТО: YouTube.com После такой процедуры цепь будет замкнута, и остальные светодиоды снова вернутся к работе. Но практика показывает, что они тоже скоро выйдут из строя ‒ попеременно, один за другим

    Как сделать светодиодную лампу вечной

    Как вы уже поняли, если понизить ток, то светодиоды перестанут перегреваться и выходить из строя. Это снизит мощность лампы, зато сделает её срок эксплуатации практически бесконечным. И снова при наличии паяльника вы можете решить эту проблему самостоятельно.

    ФОТО: YouTube.com Чтобы извлечь микросхему с блоком питания, нужно сначала отпаять питающие проводки

    ФОТО: YouTube.com Контакт на цоколе просто вынимается ножом или другим острым предметом

    ФОТО: YouTube.com После этих манипуляций содержимое лампы легко вынимается из корпуса. Будьте осторожны, чтобы не повредить конструкцию

    ФОТО: YouTube.com Обратите внимание – на микросхеме есть два сопротивления. Они выглядят так или немного иначе, но принцип остаётся

    ФОТО: YouTube.com Чтобы снизить ток, вам нужно просто выпаять большее сопротивление из имеющихся. Для этого потребуется паяльник. Удалите микроскопическую деталь и пайкой замкните цепь в этом месте

    ФОТО: YouTube.com После этого останется только собрать все части лампы, снова подпаять питание к цепи светодиодов и собрать корпус

    В результате такого преобразования лампа будет получать пониженный ток, это будет способствовать тому, что светодиоды не будут перегреваться. Свет станет тусклее, но зато прибор будет служить бесконечно долго, а это и было основной задачей.

    #лучшедома. Как отремонтировать светодиодную лампочку и сделать её ярче

    Светодиодные лампы сегодня довольно распространены. Это неудивительно, ведь при сохранении той же яркости в сравнении с обычными лампочками они потребляют в разы меньше электроэнергии, а работают дольше. Но и они не вечны. А можно ли спасти вышедший из строя излучатель? Свой вариант решения этого вопроса предлагает автор YouTube-канала AvtoClass, который знает, как не только отремонтировать светодиодную лампу, но и сделать её значительно ярче без повышения потребления электрической энергии и нагрузки на SMD-элементы.

    Читайте в статье

    Наиболее часто встречающиеся неисправности светодиодных ламп

    Популярность светодиодного освещения привела к тому, что многие недобросовестные производители стали наращивать темпы производства в ущерб качеству. Как результат, часто LED-лампочки не проживают и половины гарантийного срока, заявленного производителем. Многие, столкнувшиеся с подобной проблемой, просто выбрасывают такие излучатели в мусорную корзину. Но торопиться с подобным действием не стоит. Такие лампы можно не только «реанимировать», но и сделать их значительно ярче. Попробуем разобраться, как это сделать.

    Чаще всего (90 % случаев) в светодиодных лампах встречается две неисправности – сгорает один из чипов или выходит из строя конденсатор. Любая из этих неприятностей вполне устранима. К тому же никто не будет заниматься пайкой каждой лампы. А вот когда их соберётся 5-6, можно браться и за паяльник. А в этом случае одну из них можно использовать как донора.

    С чего начать ремонт светодиодной лампы

    Первым делом необходимо определить причину неисправности светодиодной лампы, для чего её нужно разобрать. Для этого сначала снимается рассеиватель. Он держится на герметике, а потому здесь рациональным будет использование тонкой отвёртки или ножа.

    Под снятым пластиковым колпаком можно увидеть платформу с распределёнными по ней чипами светодиодов, но пока на это обращать внимание не стоит. Для начала следует полностью разобрать лампочку. Ведь даже если виден подгоревший светодиод, внутри также могут быть проблемы. Да и для описываемой сегодня самоделки платформу всё равно придётся демонтировать, а потому пора брать в руки паяльник.

    На этом этапе нужно отпаять центральный провод от цоколя, а значит, требуется разогреть контакт.

    ФОТО: YouTube.com Нагрев центрального контакта цоколя приведёт к отпаиванию провода

    Далее отпаивается второй контакт, который находится сверху резьбовой части цоколя. Теперь, когда ничего не мешает, можно вытаскивать платформу с чипами из корпуса.

    Поиск неисправностей светодиодной лампы

    Для начала стоит внимательно осмотреть каждый из светодиодных чипов, расположенных на поверхности платформы. Кстати, она делается из алюминия и является радиатором, не дающим элементам перегреваться. Если светодиод вышел из строя, то на его поверхности можно увидеть маленькую чёрную точку.

    ФОТО: YouTube.com Светодиоды необходимо тщательно рассмотреть

    В сегодняшнем примере все чипы оказались чистыми, но вот конденсатор на плате позади радиатора оставлял желать лучшего. Он не просто вздулся. Создаётся впечатление, будто его специально нагрели до очень высокой температуры либо подали слишком высокое напряжение на линию. Но в любом случае его требуется заменить, а это значит ─ либо брать лампу-донора, либо искать подходящий по параметрам. Здесь необходим электролитический конденсатор на 400 В и 3,3 мкФ.

    ФОТО: YouTube.com Конденсатор точно никуда не годится

    Подбор конденсатора по параметрам

    При подборе подходящего электролитического конденсатора лучше отдать предпочтение старым, ещё советским. Но сейчас такие найти очень сложно. И ещё одно. Если подошедший по параметрам конденсатор немного большего размера, то ничего страшного в этом нет. Главное, чтобы в корпусе места хватило. А вот впаивать элемент, который не совсем подходит, не стоит, даже если его параметры по напряжению выше, а не ниже требуемых.

    ФОТО: YouTube.com То, что подходящий электролитический конденсатор больше, роли не играет

    Проверка ремонтной лампы и продолжение работ

    После замены неисправного конденсатора нужно проверить ремонтную лампу. Для этого используется «переноска», или попросту патрон с присоединённым к нему проводом со штепсельной вилкой на конце. (На всякий случай: чем длиннее провод, тем безопаснее). Если всё в порядке, можно продолжать работу.

    ФОТО: YouTube.com Лампочка работоспособна, можно двигаться дальше

    Установка мощного отражателя

    Никаких изменений в схему внесено не было, а значит, для усиления мощности светового потока потребуется мощный отражатель. В качестве него можно использовать ненужный компакт-диск. Однако в обычном виде использовать его не удастся, нужны небольшие изменения.

    При помощи столярного «пера» на 35 необходимо расширить центральное отверстие диска. По сути это и будет подготовкой. При отсутствии нужного инструмента можно прорезать отверстие необходимого диаметра при помощи обычного канатика из капроновой нитки.

    ФОТО: YouTube.com При помощи «пёрышка» на 35 несложно расширить отверстие в диске

    Далее отражатель требуется установить. Для этого потребуется немного быстросохнущего клея. Через отверстие диска проводится драйвер так, чтобы отражающая сторона диска соприкасалась с задней частью радиатора светодиодов. Именно в таком положении платформа лампы и CD склеиваются.

    ФОТО: YouTube.com Радиатор светодиодной лампочки склеивается с компакт-диском

    Полная сборка светодиодной лампочки

    Для того чтобы собрать лампу было проще, цоколь лучше снять с корпуса. Собирается светодиодная лампочка в обратном порядке, необходимые контакты подпаиваются. Но и здесь есть свои нюансы. К примеру, не стоит менять местами провода при сборке, даже если их длины достаточно. Несмотря на то, что в случае замены лампа всё равно будет работать, она может мерцать при выключенном свете. Конечно, подобному мерцанию подвержены только лампочки самой низшей ценовой категории, но рисковать тоже не стоит.

    Также не стоит приклеивать на место рассеиватель – теперь он попросту не нужен. Использование усиленной лампы в сырых помещениях и тем более на улице не допускается. По сути, получившаяся доработанная лампочка ─ ни что иное, как домашний или гаражный мини-прожектор, который способен освещать в 2-3 раза большую площадь, чем обычный излучатель. При этом и свет будет значительно ярче, а потому не стоит смотреть на него, когда он включён.

    ФОТО: YouTube.com Всё готово, осталось собрать, подпаять, и можно пользоваться

    После полной сборки имеет смысл проклеить и задний шов, где корпус прилегает к компакт-диску. Это не критично, однако так прожектор будет крепче. Вообще, если человек впервые увидит такую модернизированную лампочку, он вряд ли поймёт её назначение. Даже после объяснений с трудом верится, что сила светового потока такого излучателя значительно выше, нежели у простой лампочки. А значит, и не стоит верить на слово. Проще ввернуть получившийся мини-прожектор в патрон и проверить.

    ФОТО: YouTube.com Вот такая странная конструкция у изготовленного из светодиодной лампы прожектора

    Проверка прожектора в сравнении

    Для наглядности всегда лучше неподалёку включить другой осветительный прибор, чтобы было с чем сравнивать. В случае испытания мини-прожектора было решено проверить его, сравнив с обычным потолочным светильником «Армстронг», в котором установлены 4 трубчатые люминесцентные ламы по 18 Вт. В сегодняшнем случае производилась переделка лампочки в 11 Вт, что соответствует одной трубке светильника «Армстронг». Выводы делать читателю.

    ФОТО: YouTube.com Светильник «Армстронг» с четырьмя трубками по 18 Вт и суммарной потребляемой мощностью 72 Вт

    ФОТО: YouTube.com Модернизированная светодиодная лампа мощностью 11 Вт

    Наверное, комментарии излишни.

    Заключительная часть

    Многие скажут, что смысла ремонтировать светодиодные лампы нет, ведь сегодня их стоимость невысока. Однако на это можно возразить, что если такой излучатель будет перегорать чаще, чем обычная лампа накаливания, то частое приобретение снизит, а то и сведёт на «нет» всю экономию. А тогда какой смысл с подобного «прогресса»? К тому же много времени подобный ремонт не займёт, а установка отражателя сделает световой поток от лампочки в разы сильнее. Да и сам факт ремонта электроники, пусть и довольно простой, уже может дать некоторым мастерам повод для гордости. А значит, «игра стоит свеч», не так ли?

    Надеемся, что домашним мастерам, пользователям нашего ресурса, пригодится изложенная сегодня информация. Возможно, при написании статьи была упущена какая-либо информация. В таком случае напишите об этом в обсуждениях ниже. Редакция HouseChief обязательно разъяснит все непонятные моменты в максимально сжатые сроки. Там же вы можете оставить свой комментарий к статье, высказать личное мнение о том, стоит ли ремонтировать светодиодные лампы или лучше приобретать новые. И ещё, пожалуйста, не забудьте оценить прочитанное. Ваше мнение очень важно для нас.