Как сделать мигающий светодиод на авто?

Мигающий светодиод – находка для автомобилиста

Мигающий светодиод может быть реализован и использован несколькими способами, от чего зависит и его дальнейшая область применения. Схемы могут состоять из нескольких диодов, транзисторов, подключаться к различным источникам питания, даже к батарейкам, по-разному моргать. Собрать большинство из них можно своими руками, но иногда нужно подогнать теоретическую базу.

Один из самых простых способов реализации моргающих светодиодных индикаторов может успешно имитировать сигнализацию для автомобиля. Для авто премиум-класса это не очень актуально, а для менее элитной техники, общая стоимость которой не окупает установку дорогостоящей системы оповещения, такая схема будет в самый раз. Мигалка на светодиодах в таком случае будет оптимальным вариантом.

Мигающий светодиод как сигнализация

Купить моргающий диод для авто – избавить себя от кропотливого просиживания над обработкой платы. Это не всегда верно, но в данном случае очень подходит. Важно разобраться, почему почему мигает светодиод.

На вид такой моргающий LED-индикатор невозможно отличить от обычного светодиода, который светится постоянно. При подаче напряжения он начинает мигать пару раз в секунду. Наличие мультиметра также поможет различить полупроводниковые приборы. В прямом направлении моргающий диод демонстрирует небольшое сопротивление, а в обратном – светодиод с обычным показателем падения напряжения.

Немного о самих мигающих светодиодах

Основой мигания светодиода служит небольших размеров чип, который состоит из высокочастотного задающего генератора. Последний работает совместно с делителем на логических элементах, давая возможность получать вместо высоких значений частоты требуемые 1-3 Гц.

Чтобы реализовать низкочастотный генератор, необходимо использовать конденсатор с большой ёмкостью. Решив собрать схему своими руками, весьма проблематично было бы использовать полупроводник с большой площадью. Почему – да он просто не уместится в корпусе светодиода.

На полупроводниковой подножке размещены не только генератор и делитель, но также электронный ключ и диод-протектор. Мигающие светодиоды с напряжением питания 3-12В оборудуются также ограничительным резистором, а низковольтным он не требуется.

Основное назначение диода-протектора заключается в предотвращении поломки микросхемы в случае переплюсовки её питания.

При подаче напряжения автомобильной сети номинал токоограничивающего резистора должен выбираться из диапазона 3-5кОм. Подключив светодиод своими руками можно отметить, что он потребляет ток не только при мерцании, но и в пазах.

Сборка сигнализации своими руками

Определившись с тем, как устроены мигающие светодиоды, как они работают, и почему мигают, можно приступить непосредственно к монтажу.

Для сборки потребуется 2 гибких многожильных проводка небольшого диаметра. Предпочтительнее выбирать кабели разного цвета, чтобы иметь возможность отличать их при подключении к автомобильной проводке.

Далее нужно тщательно заизолировать места пайки при использовании обычного или термоусадочного кембрика.

Когда резистор и оба провода закреплены, можно поместить схему в толстую полимерную трубку. Окончательный этап монтажа сигнализации своими руками – подключение проводов к «+» и «-» цепи питания автомобиля. Если все мигает как надо, мигалку на светодиодах можно считать удачной.

Сборка схем своими руками на базе светодиодов пользуется огромной популярностью среди автолюбителей. Почему? Диоды дают огромные возможности для тюнинга. Замена любого освещения, внутренней подсветки и многое другое.

Как сделать мигающий светодиод на авто?

Простая мощная мигалка-двухполюсник на 12/24 Вольта.

Автор: Carabas
Опубликовано 26.12.2011
Создано при помощи КотоРед.

История вопроса: Мой шурин работает в автомастерской на фирме, которая занимается перевозкой тяжёлых и негабаритных грузов на близкие и дальние расстояния. Как-то зашёл у нас разговор по поводу жёлтых мигалок (что-то вроде изображённой на рис.1), которыми оборудованы эти «дальнобои». Шурин посетовал, дескать моторчики в этих мигалках в рейсах постоянно ломаются, что создаёт массу неудобств.

«Вот тут мы закупили для пробы 10 штук с электронной начинкой, распотроши одну и посмотри, может спаять таких несколько платочек и вставить в нерабочие мигалки?» — спросил он. Вскрытие показало наличие схемы с заслуженным таймером NE555 с обвязкой, раскачивающим мощный MOSFET и интегральным стабилизатором на 12 Вольт для запитки этого самого таймера. Воистину лень – двигатель прогресса. Перспектива рисовать – травить – сверлить меня не вдохновила и подумалось: а что, если порыться в тырнете, может есть что попроще? Неужели в 21 веке…?, когда космические корабли бороздят…? для какой-то мигалки ничего интереснее не найти?! Увы, не нашлось (а может плохо искал). Взгляд наткнулся на так называемые мигающие светодиоды (Blinked Led). Заинтересовало. Почитал о них подробнее. А вот здесь можно посмотреть: https://video.mail.ru/mail/obrazovanie-new/5107/7064.html где господа из «Чип и Дип» утверждают, что структурная схема светодиода (далее BL) соответствует приведённой на рис.2

Шурин с оказией был заслан на Митинский радиорынок с одним условием – «Купи парочку на пробу и чтоб моргали пореже, как ваши мигалки». В предвкушении он купил сразу десяток и выдал мне полную ТТХ словами: «Продавец сказал три вольта, двадцать миллиампер, светится – белым». Ну что-ж, ладно, перейдём к фазе экспериментальной теории. Была спаяна схемка (рис.3)

Резистор номиналом 3КОм (на всякий случай, чтоб не насиловать предельными токами). Осциллограф показал следующее: U1- 3.0V, U2- 7,0V практически не изменяются при варьировании Uпит. от 9 до 30 Вольт. Период следования импульсов около секунды. И чем же мы будем управлять этими импульсами? Поиск по даташитам привел к недорогому и популярному в широких кругах транзистору IRFZ44N. Вот его характеристики (рис.4)

Транзистор закрыт при U затвора до 3.5 Вольт, а уверенно открывается при напряжении 6 Вольт и выше. Причём при напряжении на затворе 7.0 Вольт сопротивление канала порядка 22 миллиОм, что есть очень даже неплохо.

Предполагаю (чисто теоретически), что резистор R1 на рис.2 нам вреден потому, что

суживает диапазон U2 – U1 (рис.3), а напряжение U1 нам важно с точки зрения полного запирания канала. Ставят же его только в BL с высоким напряжением питания (6V, 9V…). В нашем случае применён 3-х вольтовый BL, где вроде-бы резистор отсутствует. но конкретный BL мне попался случайно и поэтому здесь есть большой простор для экспериментов и в подборе BL, и в подборе MOSFETа.

Теперь переходим к фазе практики. Паяем схему (рис.5)

На всякий случай скажу, что короткий вывод BL подключается обычно к «-», но если перепутаете, не страшно – внутри установлен защитный диод D. Кстати это касается и транзистора. Правда переполюсовкой всей схемы увлекаться не стоит, поскольку диод в транзисторе имеет падение напряжения порядка 1 вольт и будет перегреваться при больших проходящих токах. Для начинающих радиолюбителей также замечу, что корпус транзистора нельзя «сажать» на массу. Вот, что у меня получилось: (рис.6)

В качестве нагрузки я использовал галогенку с двумя спиралями на 12 вольт (55 и 60 Ватт соответственно), включёнными последовательно. Источник питания – старенький ЛАТР с выпрямителем на 5 Ампер. IRFZ44N не нагревается совершенно (комнатная температура). Схема уверенно работает от 9 до 30 вольт (выше не пробовал, лампу жалко и ЛАТР тоже). Изоляция – бумажный скотч.

Читайте также  Курс arduino - моторы

«И где же тут двухполюсник?» — спросите Вы. Когда я объяснял шурину схему подключения сего дивайса, то после очередного вопроса с его стороны понял горькую истину – моя схема колоссально сложная и грамотно подключить её сможет редкий электрик. Архиважно кардинально упростить схему подключения к нагрузке, посижу-ка я, подумаю ещё. И вот что надумал: (рис.7)

По сути это двухполюсник. Мы можем подключать нагрузку в нижнее плечо, в верхнее плечо и даже в оба плеча одновременно. Это может быть полезно, например в автомобиле, где лампы одним электродом жёстко привязаны к массе кузова. Можно управлять включением устройства дистанционно при помощи тумблера, например, включенного в разрыв R1. А вот так я его сваял в «железе» : (рис.8)

По поводу деталей:

Марки BL не знаю, приблизительные данные см. выше. При подборе MOSFETа сверяйтесь с характеристиками его затвора (GATE) по даташиту (Datasheet), ( GOOGLE – Ваш помощник).

С1- не ниже 10 мФ (лучше с запасом по ёмкости и по напряжению). VD1- любой кремниевый диод на 30V, 250 mA. А вот фотография лабораторного испытания двухполюсника : (рис.9)

Большущий Адронный Коллаэдр отдыхает.

Помогали мне , как обычно: Мурик и Тошка. (рис.10)

С уважением и наилучшими пожеланиями всем осилившим этот опус:

Как сделать мигалку из светодиода: инструкции и схемы

Собирать мигающий светодиод своими руками нет большой необходимости. В продаже давно появились такие диоды разных моделей и цветов, и для их работы не нужно дополнительных управляющих устройств. В этой микро-лампочке внутри колбы впаяна схемка, благодаря ей и происходит мигание. Но радиолюбителю неинтересно покупать готовую технику, он хочет сделать сам.

Принцип действия светодиода

В отличие от работы обычного светодиода в схему добавляется конденсатор. Он накапливает энергию, после чего происходит лавинный пробой, и диод загорается на доли секунды. Потом снова заряжается – и снова пробой. Таким образом и происходит мигание.

Простейшая схема выглядит так:

Как сделать светодиодную мигалку своими руками

Вернемся к схеме. В ней задействованы (слева направо): светодиод, транзистор типа КТ315, резистор 1 кОм и под ним конденсатор электролитический на 16 вольт и емкостью 1000-3000 мкф.

Теперь посмотрим, как собирается подобная простая мигалка.

Что нужно

  • Паяльник с тонким жалом, канифоль и припой.
  • Транзистор КТ315 или аналог.
  • Светодиод.
  • Блок питания на 12 вольт (лучше регулируемый) или другой источник с таким напряжением.
  • Какой-либо корпус под вашу мигалку или конструкцию, в которую будете монтировать диод (необязательно; для пробной сборки можно выбрать спичечный коробок).

Последовательность сборки мигалки

Будем двигаться от источника питания.

  • К выводу «+» от источника припаиваем резистор.
  • Свободный контакт резистора припаиваем к эмиттеру транзистора. Как определить эмиттер и другие контакты, смотрите видео:

  • Дальше эмиттер соединяем с «+» выводом конденсатора. Определить плюс и минус можно по маркировке на корпусе. Минус обозначается светлой полоской.

  • Следующий этап – соединение контакта «коллектор» транзистора с «+» выводом диода. КТ315 имеет такой контакт посередине. Плюсовой вывод диода можно определить визуально. Внутри его колбы находится пара электродов. Тот, который меньше размером, он плюсовой.

Для наглядности рекомендуем посмотреть видео-инструкцию:

  • Осталось два действия. Припаиваем «-» диода к «-» источника питания и к этой же линии цепляем «-» конденсатора.

В итоге может получиться такая пробная мигалка:

Несколько советов

Во-первых, рекомендуем брать регулируемый блок питания. Часто даже правильно собранная схема работает неверно. В таком случае иногда достаточно немножко подкрутить входное напряжение регулятором на блоке.

Во-вторых, покупайте только качественные детали.

В-третьих, если вам кажется, что мигалка на светодиоде не пригодится вам в быту, хорошо подумайте и оглянитесь вокруг. Или поищите в интернете информацию, где их применяют. Вы наверняка найдете что-нибудь интересное.

Если же просто решили освоить азы радиолюбителя, то такого вопроса и не возникнет. Пробуйте собирать простые схемы и переходите к сложным. Например, к так называемым адресным светодиодным лентам, которые используются уже для серьезных комбинаций мигания света сразу между несколькими светодиодами, а то и десятками светодиодов.

В заключение

Опытный радиолюбитель всегда найдет применение старым деталям. В отработавших телевизорах, радиоприемниках и другой технике можно найти редкие транзисторы, тиристоры, резисторы, конденсаторы, диоды и прочие радиодетали.

Один умелец, например, сделал мигалку для игрушечной пожарной машины. Почему бы и нет.

Пишите комментарии, если вас заинтересовали мигающие светодиоды. И не забывайте делиться статьей в соц.сетях!

Как сделать простую мигалку своими руками или схемы мигающих светодиодов

Схема мигалки на светодиодах работает без настройки и подойдет тем, кто хочет опробовать свои силы в радиоэлектронике. С ее помощью можно изготовить елочную гирлянду, «оживить» глаза игрушки, изготовить реле поворотов для велосипеда или имитировать работу сигнализации на автомобиле. Рассмотрим несколько простых и популярных вариантов схем, доступных для повторения своими руками.

Собираем простую схему мигающего светодиода на одном транзисторе

Самая простая схема мигалки состоит из трех радиоэлементов, а четвертый – светодиод. Хотя в качестве ключевого элемента представлен транзистор, его база не подключена, и полупроводник работает как динистор.

При включении питания конденсатор не заряжен, между эмиттером и коллектором присутствует низкое напряжение, динистор закрыт и не пропускает электрический ток, светодиод не горит. По мере заряда конденсатора напряжение на нем и на динисторе растет. В определенный момент динистор открывается, и конденсатор разряжается через светодиод. Далее цикл повторяется. Частота мерцаний светодиода определяется емкостью конденсатора и сопротивлением резистора.

Всю схему легко разместить в спичечном коробке. Мигающий светодиод и провода питания удобно закрепить горячим клеем.

Если сделать несколько подобных светодиодных мигалок и включить их вместе, получится гирлянда. Так как радиоэлектронные элементы имеют определенный разброс параметров, светодиоды будут мерцать в хаотичном порядке. При этом мигалку можно изготовить в виде единого блока, как на фото.

Светодиодная мигалка с низковольтным питанием

Случается, что в качестве источника питания выступает батарейка с напряжением 1,5 или 3 вольта. Этого напряжения явно недостаточно, чтобы светодиод ярко светился. В электронных схемах питание на него чаще всего подается через транзистор, на котором падает 0,7 В, так что светодиод в таком случае не будет гореть совсем. В этом случае применяется специальная схема, где дополнительное напряжение создает электролитический конденсатор.

В момент включения питания оба транзистора закрыты, и конденсатор С2 заряжается через резисторы R3, R2, напряжение на нем растет. Конденсатор С1 заряжается через резисторы R1, R2, напряжение на нем также растет. В итоге открывается транзистор VT1, который, в свою очередь, открывает транзистор VT2. В результате источник питания и конденсатор С2 включаются последовательно, и на светодиод подается повышенное напряжение питания. По мере разряда конденсатора С2 светодиод гаснет. Далее цикл повторяется.

Популярная схема мультивибратора

Схема мигающего светодиода на симметричном мультивибраторе надежно работает сразу после включения питания. В ней удается легко регулировать периоды свечения и отключения светодиодов. Она хорошо подходит для имитации работы сигнализации автомобиля или в качестве реле поворотов для велосипеда.

Читайте также  Светодиоды большой яркости

В данном случае конденсаторы С1 и С2 последовательно заряжаются через резисторы R2 и R3 соответственно. При достижении определенного напряжения на базе одного из транзисторов он открывается и происходит разряд соответствующего конденсатора. При этом протекает ток через светодиод в коллекторе открытого транзистора. Процесс повторяется.

Частота и длительность мигания светодиода определяется элементами С1, R2 и С2, R3. Сопротивление резисторов можно изменять в пределах (5,1 – 100)кОм, а емкость конденсаторов — в пределах (1 – 100)мкФ. Подбирая названные элементы, можно добиться предпочтительного результата. Сначала устройство собирают на макетной плате, где удобно заменять и подбирать элементы схемы.

Все элементы – практически любого типа. Подойдет светодиод типа АЛ 3075, который очень похож на светодиоды сигнализаций. Различные вариации на базе схемы симметричного мультивибратора позволяют получить необходимый результат в зависимости от конкретных требований к схеме.

Например, светодиод может быть только один. Во втором плече мультивибратора в качестве нагрузки будет достаточно резистора порядка 500 Ом при напряжении питания до 12В.

В данном примере мы заменили транзисторы КТ315 « обратной» проводимости или n-p-n на комплементарные транзисторы КТ361 «прямой» проводимости или p-n-p. При этом понадобилось изменить полярность питания, светодиодов и конденсаторов. Кроме того, в схему добавлен переменный резистор, который позволяет регулировать частоту мигания светодиодов в определенных пределах.

В этом примере исключены нагрузочные резисторы. Они не нужны, так как при питании порядка 2,4 или 3 вольта и падении напряжения на открытом транзисторе 0,7 В светодиоды не будут перегружены.

В каждое плечо мультивибратора можно включить по два светодиода параллельно. При этом они будут загораться в обратном порядке, то есть тогда, когда соответствующие транзисторы будут закрываться. Однако в этом случае парные светодиоды могут светиться с разной яркостью из-за различия параметров.

В этой схеме включено по три светодиода в каждом плече схемы, и через них будет протекать одинаковый ток. Можно включать последовательно и ленту светодиодов, однако при этом придется поднимать напряжение питания схемы. Для простоты можно считать, что на одном из них падает порядка 1,5 В. При этом нужно использовать транзисторы и конденсаторы, рабочее напряжение которых выше напряжения питания схемы.

Включить светодиодную ленту, не повышая напряжение питания, можно с помощью этой схемы. При этом заметно возрастает ток через транзисторы, так что пришлось добавить выходные каскады на транзисторах средней мощности.

Эта схема позволяет реализовать «бегущие огни» довольно простым способом. Элементы R1-R4 и С1-С4 подобраны так, чтобы светодиоды мигали последовательно. Подбирая их, можно менять световые эффекты. Переменные резисторы R6,R7 позволяют регулировать частоту мерцания светодиодов.

Подборка элементов схемы и правила монтажа своими руками

Далеко не всегда есть в наличии детали, указанные на схеме. Их нетрудно заменить. Часто на схемах указаны транзисторы КТ 315Б, которые имеют небольшие размеры. Вместо них подойдут такие же с любой буквой, однако при высоком напряжении питания схемы надо убедиться с помощью справочника, что они выдержат. Практически во всех примерах подойдут почти любые транзисторы малой мощности.

При этом можно использовать элементы другой проводимости, изменив полярность подключения питания, светодиодов и конденсаторов. Конкретно у транзисторов К315 буквенный индекс находится справа, а у КТ361 — посередине корпуса. Резисторы и электролитические конденсаторы подойдут любые малогабаритные.

Если мы говорим об устройстве, имитирующем автосигнализацию, или реле поворотов для велосипеда, то монтаж лучше всего сделать на печатной плате, которую помещают в пластмассовую коробку. Два провода из коробки подводят к мигающему светодиоду, еще один соединяют с корпусом, а четвертый подсоединяют через тумблер к питанию + 12 В. Подключаться необходимо к цепи, которая находится постоянно под напряжением и защищена предохранителем. Монтажные провода должны иметь надежную изоляцию. Их необходимо хорошо закрепить и надежно защитить от возможного перетирания.

Делаем мигающий светодиод своими руками: простейшие и сложные схемы

Мигающие светодиоды применяются в различных сигнальных схемах, в рекламных щитах и вывесках, электронных игрушках. Сфера их применения достаточно широка. Простая мигалка на светодиоде может быть также использована для создания автосигнализации. Надо сказать, что моргать этот полупроводниковый прибор заставляет встроенная микросхема (ЧИП). Основные достоинства готовых МСД: компактность и разнообразие расцветок, позволяющее красочно оформлять электронные устройства, например, рекламное табло с целью привлечения внимания покупателей.

Но можно изготовить мигающий светодиод самостоятельно. Используя простые схемы, это сделать несложно. Как сделать мигалку, имея небольшие навыки работы с полупроводниковыми элементами, описано в этой статье.

Мигалки на транзисторах

Самый простой вариант – светодиодная мигалка на одном транзисторе. Из схемы видно, что база транзистора висит в воздухе. Такое нестандартное включение позволяет ему работать как динистор.

Светодиодная мигалка на одном транзисторе

При достижении порогового значения возникает пробой структуры, открытие транзистора и разрядка конденсатора на светодиод. Такая простая мигалка на транзисторе может найти применение в быту, например, в небольшой елочной гирлянде. Для ее изготовления понадобятся вполне доступные и недорогие радиоэлементы. Светодиодная мигалка, сделанная своими руками, придаст немного шарма пушистой новогодней красавице.

Можно собрать похожее устройство уже на двух транзисторах, взяв детали из любой радиоаппаратуры, отслужившей свой срок. Схема мигалки приведена на рисунке.

Схема мультивибратора на двух транзисторах для простой мигалки

Для сборки понадобятся:

  • резистор R = 6,8–15 кОм – 2 штуки;
  • резистор R = 470–680 Ом – 2 штуки;
  • транзистор n-p-n-типа КТ315 Б – 2 штуки;
  • конденсатор C = 47–100 мкФ – 2 штуки;
  • маломощный светодиод или светодиодная лента.

Диапазон рабочего напряжения 3–12 вольт. Подойдет любой источник питания с такими параметрами. Эффект мигания в данной схеме достигается поочередным зарядом и разрядом конденсаторов, влекущим за собой открытие транзисторов, в результате чего появляется и исчезает ток в цепи светодиода.

Светодиоды с миганием можно получить, подключив выводы к нескольким разноцветным элементам. Встроенный генератор выдает поочередно импульсы на каждый цвет. Частота моргающего импульса зависит от заданной программы. Таким веселым миганием можно порадовать ребенка, если установить устройство в детскую игрушку, например, машинку.

Неплохой вариант получится, если взять трехцветный мигающий светодиод, имеющий четыре вывода (один общий анод или катод и три вывода управления цветом).

Еще один простой вариант, для сборки которого понадобятся батарейки типа CR2032 и резистор сопротивлением от 150 до 240 Ом. Мигающий светодиод получится, если последовательно соединить все элементы в одной схеме, соблюдая полярность.

Мигающий светодиод

Если получается собрать веселые огоньки по простейшей схеме, можно перейти к более сложной конструкции.

Схема мигалки на светодиодах

Данная схема мигалки на светодиодах работает следующим образом: при подаче напряжения на R1 и заряжении конденсатора С1, на нем растет напряжение. После того как оно достигнет 12 В, происходит пробой p-n-перехода транзистора, что увеличивает проводимость и вызывает свечение светодиода. При падении напряжения транзистор закрывается, и процесс идет сначала. Все блоки работают примерно на одной частоте, если не учитывать небольшую погрешность. Схему мигалки на светодиодах с пятью блоками можно собрать на макетной плате.

Читайте также  Расчет драйвера для светодиодов

Макет мигалки на транзисторах

Как сделать мигающий светодиод

Мигающие светодиоды часто применяют в различных сигнальных цепях. В продаже довольно давно появились светодиоды (LED) различных цветов, которые при подключении к источнику питания периодически мигают. Для их мигания не нужны никакие дополнительные детали. Внутри такого светодиода смонтирована миниатюрная интегральная микросхема, управляющая его работой. Однако для начинающего радиолюбителя намного интереснее сделать мигающий светодиод своими руками, а заодно изучить принцип работы электронной схемы, в частности мигалок, освоить навыки работы с паяльником.

  1. Как сделать светодиодную мигалку своими руками
  2. Простая мигалка на светодиоде
  3. Мигающий светодиод на одной батарейке

Как сделать светодиодную мигалку своими руками

Существует множество схем, с помощью которых можно заставить мигать светодиод. Мигающие устройства можно изготовить как из отдельных радиодеталей, так и на основе различных микросхем. Сначала мы рассмотрим схему мигалки мультивибратора на двух транзисторах. Для ее сборки подойдут самые ходовые детали. Их можно приобрести в магазине радиодеталей или «добыть» из отживших свой срок телевизоров, радиоприемников и другой радиоаппаратуры. Также во многих интернет магазинах можно купить наборы деталей для сборки подобных схем led мигалок.

На рисунке изображена схема мигалки мультивибратора, состоящая всего из девяти деталей. Для ее сборки потребуются:

  • два резистора по 6.8 – 15 кОм;
  • два резистора имеющие сопротивление 470 – 680 Ом;
  • два маломощных транзистора имеющие структуру n-p-n, например КТ315 Б;
  • два электролитических конденсатора емкостью 47 –100 мкФ
  • один маломощный светодиод любого цвета, например красный.

Не обязательно, чтобы парные детали, например резисторы R2 и R3, имели одинаковую величину. Небольшой разброс номиналов практически не сказывается на работе мультивибратора. Также данная схема мигалки на светодиодах не критична к напряжению питания. Она уверенно работает в диапазоне напряжений от 3 до 12 вольт.

Схема мигалки мультивибратора работает следующим образом. В момент подачи на схему питания, всегда один из транзисторов окажется открытым чуть больше чем другой. Причиной может служить, например, чуть больший коэффициент передачи тока. Пусть первоначально больше открылся транзистор Т2. Тогда через его базу и резистор R1 потечет ток заряда конденсатора С1. Транзистор Т2 будет находиться в открытом состоянии и через R4 будет протекать его ток коллектора. На плюсовой обкладке конденсатора С2, присоединенной к коллектору Т2, будет низкое напряжение и он заряжаться не будет. По мере заряда С1 базовый ток Т2 будет уменьшаться, а напряжение на коллекторе расти. В какой-то момент это напряжение станет таким, что потечет ток заряда конденсатора C2 и транзистор Т3 начнет открываться. С1 начнет разряжаться через транзистор Т3 и резистор R2. Падение напряжения на R2 надежно закроет Т2. В это время через открытый транзистор Т3 и резистор R1 будет течь ток и светодиод LED1 будет светиться. В дальнейшем циклы заряда-разряда конденсаторов будут повторяться попеременно.

Если посмотреть осциллограммы на коллекторах транзисторов, то они будут иметь вид прямоугольных импульсов.

Когда ширина (длительность) прямоугольных импульсов равна расстоянию между ними, тогда говорят, что сигнал имеет форму меандра. Снимая осциллограммы с коллекторов обоих транзисторов одновременно, можно заметить, что они всегда находятся в противофазе. Длительность импульсов и время между их повторениями напрямую зависят от произведений R2C2 и R3C1. Меняя соотношение произведений можно изменять длительность и частоту вспышек светодиода.

Для сборки схемы мигающего светодиода понадобятся паяльник, припой и флюс. В качестве флюса можно использовать канифоль или жидкий флюс для пайки, продающийся в магазинах. Перед сборкой конструкции необходимо тщательно зачистить и залудить выводы радиодеталей. Выводы транзисторов и светодиода нужно соединять в соответствии с их назначением. Также необходимо соблюдать полярность включения электролитических конденсаторов. Маркировка и назначение выводов транзисторов КТ315 показаны на фото.

Проще всего определить катод светодиода, рассматривая прибор на просвет. Катодом является электрод с большей площадью. Минусовой вывод «электролита» обычно помечен белой полосой на корпусе прибора.

В зависимости от задач, которые ставит перед собой радиолюбитель, схему мигалки можно собрать «навесу», соединяя выводы радиодеталей между собой с помощью отрезков тонкого провода. В этом случае может получиться конструкция наподобие той, что показана ниже на фото.

Собираем мигалку «на коленке»

Если нужно собрать мигалку для последующего применения, то монтаж можно выполнить на куске жесткого картона или изготовить печатную плату из текстолита.

Простая мигалка на светодиоде

Существуют более простые схемы мигалок на светодиоде. Одна из таких показана на следующем фото.

Схема самой простой мигалки

Если внимательно присмотреться к этой светодиодной мигалке, то можно увидеть, что транзистор в схеме мигалки включен «неправильно». Во-первых, неправильно подключены эмиттер и коллектор. Во-вторых, база «висит в воздухе». Однако схема светодиодной мигалки вполне рабочая. Дело в том, что в ней КТ315 работает как динистор. При достижении на нем порогового значения обратного напряжения происходит пробой полупроводниковых структур и транзистор открывается. Нарастание напряжения на транзисторе происходит по мере зарядки конденсатора. После открывания транзистора конденсатор разряжается на светодиод. Так как в схеме мигалки на светодиодах используется нестандартное включение транзистора, она может потребовать подбора резистора или конденсатора при наладке.

После того, как сделаете своими руками простую мигалку, можете переходить к более сложным мигающим устройствам, например к созданию цветомузыки на светодиодах.

Мигающий светодиод на одной батарейке

Большинство светодиодов работают при напряжениях свыше 1.5 вольт. Поэтому их нельзя простым способом зажечь от одной пальчиковой батарейки. Однако существуют схемы мигалок на светодиодах позволяющие преодолеть эту трудность. Одна из таких показана ниже.

В схеме мигалки на светодиодах имеется две цепочки заряда конденсаторов: R1C1R2 и R3C2R2. Время заряда конденсатора С1 гораздо больше времени заряда конденсатора С2. После заряда С1 открываются оба транзистора и конденсатор С2 оказывается последовательно соединен с батарейкой. Через транзистор Т2 суммарное напряжение батареи и конденсатора прикладывается к светодиоду. Светодиод загорается. После разряда конденсаторов С1 и С2 транзисторы закрываются и начинается новый цикл зарядки конденсаторов. Такая схема мигалки на светодиодах называется схемой с вольтодобавкой.

Мы рассмотрели несколько схем мигалок на светодиодах. Собирая эти и другие устройства можно не только научиться паять и читать электронные схемы. На выходе можно получить вполне работоспособные приборы полезные в быту. Дело ограничивается только фантазией создателя. Проявив смекалку, из светодиодной мигалки можно, например, сделать сигнализатор открытой дверцы холодильника или указатель поворотов велосипеда. Заставить мигать глазки мягкой игрушки.