Как рассчитать токоограничивающий резистор?

Резисторы: последовательное и параллельное соединение, токоограничивающие и подтягивающие сопротивления

Резистор (сопротивление) — один из наиболее распространённых компонентов в электронике. Его назначение — простое: сопротивляться течению тока, преобразовывая его часть в тепло.

Основной характеристикой резистора является сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем большая часть тока рассеивается в тепло. В схемах, питаемых небольшим напряжением (5 – 12 В), наиболее распространены резисторы номиналом от 100 Ом до 100 кОм.

Закон Ома

Закон Ома позволяет на заданном участке цепи определить одну из величин: силу тока I, напряжение U, сопротивление R, если известны две остальные:

Для обозначения напряжения наряду с символом U используется V.

Рассмотрим простую цепь

Расчитаем силу тока, проходящего через резистор R1 и, соответственно, затем через лампу L1. Для простоты будем предполагать, что сама лампа обладает нулевым собственным сопротивлением.

Аналогично, если бы у нас был источник питания на 5 В и лампа, которая по документации должна работать при токе 20 мА, нам нужно бы было выбрать резистор подходящего номинала.

В данном случае, разница в 10 Ом между идеальным номиналом и имеющимся не играет большого значения: можно смело брать стандартный номинал — 240 или 220 Ом.

Аналогично, мы могли бы расчитать требуемое напряжение, если бы оно было не известно, а на руках были значения сопротивления и желаемая сила тока.

Соединение резисторов

При последовательном соединении резисторов, их сопротивление суммируется:

При параллельном соединении, итоговое сопротивление расчитывается по формуле:

Если резистора всего два, то:

В частном случае двух одинаковых резисторов, итоговое сопротивление при параллельном соединении равно половине сопротивления каждого из них.

Таким образом можно получать новые номиналы из имеющихся в наличии.

Применеие на практике

Среди ролей, которые может выполнять резистор в схеме можно выделить следующие:

Токоограничивающий резистор

Пример, на котором рассматривался Закон Ома представляет собой также пример токоограничевающего резистора: у нас есть компонент, который расчитан на работу при определённом токе — резистор снижает силу тока до нужного уровня.

В случае с Ардуино следует ограничивать ток, поступающий с выходных контактов (output pins). Напряжение, в состоянии, когда контакт включен (high) составляет 5 В. Исходя из документации, ток не должен превышать 40 мА. Таким образом, чтобы безопасно увести ток с контакта в землю понадобится резистор номиналом R = U / I = 5 В / 0.04 А = 125 Ом или более.

Стягивающие и подтягивающие резисторы

Стягивающие (pull-down) и подтягивающие (pull-up) резисторы используются в схемах рядом со входными контактами логических компонентов, которым важен только факт: подаётся ноль вольт (логический ноль) или не ноль (логическая единица). Примером являются цифровые входы Ардуино. Резисторы нужны, чтобы не оставить вход в «подвешенном» состоянии. Возьмём такую схему

Мы хотим, чтобы когда кнопка не нажата (цепь разомкнута), вход фиксировал отсутствие напряжения. Но в данном случае вход находится в «никаком» состоянии. Он может срабатывать и не срабатывать хаотично, непредсказуемым образом. Причина тому — шумы, образующиеся вокруг: провода действуют как маленькие антенны и производят электричество из электромагнитных волн среды. Чтобы гарантировать отсутствие напряжения при разомкнутой цепи, рядом с входом ставится стягивающий резистор:

Теперь нежелательный ток будет уходить через резистор в землю. Для стягивания используются резисторы больших сопротивлений (10 кОм и более). В моменты, когда цепь замкнута, большое сопротивление резистора не даёт большей части тока идти в землю: сигнал пойдёт к входному контакту. Если бы сопротивление резистора было мало (единицы Ом), при замкнутой цепи произошло бы короткое замыкание.

Аналогично, подтягивающий резистор удерживает вход в состоянии логической единицы, пока внешняя цепь разомкнута:

То же самое: используются резисторы больших номиналов (10 кОм и более), чтобы минимизировать потери энергии при замкнутой цепи и предотвратить короткое замыкание при разомкнутой.

Делитель напряжения

Делитель напряжения (voltage divider) используется для того, чтобы получить из исходного напряжения лишь его часть. Например, из 9 В получить 5. Он подробно описан в отдельной статье.

Мощность резисторов

Резисторы помимо сопротивления обладают ещё характеристикой мощности. Она определяет нагрузку, которую способен выдержать резистор. Среди обычных керамических резисторов наиболее распространены показатели 0.25 Вт, 0.5 Вт и 1 Вт. Для расчёта нагрузки, действующей на резистор, используйте формулу:

При превышении допустимой нагрузки, резистор будет греться и его срок службы может сильно сократиться. При сильном превышении — резистор может начать плавиться и вызвать воспламенение. Будьте осторожны!

Расчет токоограничивающего резистора для переменного резистора

UPD: Вся приведенная ниже статья была написана мной исходя из в корне неправильного понимания смысла параметра «номинальная мощность» для переменного резистора.

Я предполагал, что это мощность, которую переменный резистор может рассеять при любом значении его сопротивления. Так вот это не так!

На самом же деле это та мощность, которую резистор безболезненно рассеивает находясь в состоянии максимального сопротивления.
При уменьшении же этого сопротивления мощность (а следовательно и максимально допустимый ток через резистор) падают пропорционально уменьшению его сопротивления!

Что любопытно, занимаясь (естественно чисто любительски и понемногу) электроникой вот уже года три я вообще нигде не встречал ничего на тему «как посчитать максимально допустимый ток через переменный резистор в реостатном включении». Видимо, всилу очевидности — для тех, кто уже знает. Но тем не менее. Какое-то более внятное описание ситуации я нашел только по-английски в совершенно замечательном и подробном материале по переменным резитсорам Beginners’ Guide to Potentiometers:

Power — A pot with a power rating of (say) 0.5W will have a maximum voltage that can exist across the pot before the rating is exceeded. All power ratings are with the entire resistance element in circuit, so maximum dissipation reduces as the resistance is reduced (assuming series or ‘two terminal’ rheostat wiring). Let’s look at the 0.5W pot, and 10k is a good value to start with for explanation.

If the maximum dissipation is 0.5W and the resistance is 10k, then the maximum current that may flow through the entire resistance element is determined by…

P = I² * R… therefore
I =√P / R… so I = 7mA

In fact, 7mA is the maximum current that can flow in any part of the resistance element, so if the 10k pot were set to a resistance of 1k, current is still 7mA, and maximum power is now only 50mW, and not the 500mW we had before.

=== ВНИМАНИЕ! ВСЕ, НАПИСАННОЕ НИЖЕ, МАТЕМАТИЧЕСКИ ПРАВИЛЬНО, НО ИСХОДИТ ИЗ НЕВЕРНОЙ ФИЗИЧЕСКОЙ МОДЕЛИ! ДЛЯ РАСЧЕТА НОМИНАЛА ПЕРЕМЕННОГО РЕЗИСТОРА ЭТИ РАСЧЕТЫ ПРИМЕНЯТЬ НЕЛЬЗЯ — ПОЛУЧЕННЫЕ ЗНАЧЕНИЯ СИЛЬНО ЗАВЫШЕНЫ! ===

Вот, казалось бы, куда уж проще задача — при помощи переменного резистора получить простейщий регулируемый «эталон тока» (это я с токовыми шунтами и усилителем на ОУ играюсь). Вроде бы делать нечего, да?

Берем первый попавшийся перменный резистор — например R-0904N-A1K, подсоединяем его к какому-нибудь источнику напряжения в 5 Вольт, начинаем крутить… Естественно, не выкручивать его до нуля соображения все же хватает, ну так мультиметр подключен, показывает ток: 1мА, 5мА, 10мА, 80мА… Блин, сгорел. Чего это он?

А у него оказывается максимальная рассеиваемая мощность — 0.05 Вт. То есть если пропустить через него на 5 Вольтах более 10 мА, то все… Он, в общем-то, хорошо еще держался. Долго.

Читайте также  Расчет емкости конденсатора для светодиода

Ну, хорошо. Берем тогда монстроидальный R-24N1-B1K (на фотографии в начале статьи — он).
0.5 Вт рассеиваемой мощности, извините.

Ну и заодно будет нелишне поставить обычный резистор последовательно с переменным в качестве токоограничивающего. Чтобы уж точно не сжечь.
Ну и надо бы посчитать как-нибудь, каким номиналом токоограничивающий резистор ставить. Посчитать бы как-нибудь… А оно как-то не хочет считаться… Какое-то оно все ну совсем нелинейное получается.

Сначала я думал прикинуть номинал в уме. Минут через пятнадцать я понял, что в уме как-то не получается и взял бумажку. Еще через полчаса я тупо глядел на три исписанных листа формата А4 и не мог понять, где я ошибся. Два последовательно подключенных резистора не могут требовать для расчета таких сложных формул!
Я плюнул на все и в течении недели время от времени возвращался к бумажкам и формулам, понимая, что не могу ни осознать эти уравнения, ни решить их. Через неделю я загнал формулы в Excel и построил по ним графики. Вот только тут я и начал немного понимать что к чему…

Начинаем от печки, рисуем схему цепи и вспоминаем закон Ома:

Сила тока в цепи равна:

Мощность, выделяемая всей цепью, Вт:

Падение напряжения на токоограничивающем резисторе R1, Вольт:

Мощность, выделяемая на токоограничивающем резисторе R1, Вт:

Падение напряжения на переменном резисторе R2, Вольт:

Мощность, выделяемая на переменном резисторе R2, Вт:

Теперь можно загнать эти формулы в Excel и попробовать численно прикинуть, как будут меняться параметры цепи при изменении R2.
Например, возьмем U = 5 Вольт, R1=15 Ом.

А картинка-то получилась… хм… любопытная.

Падения наприяжения на резисторах R1 и R2 ведут себя предсказуемо. По мере того, как растет сопротивление R2 на нем высаживается все большая и большая часть напряжения цепи. Что и понятно — когда R2 близко к нулю имеет значение только сопротивление R1, а при R2 = 150 Ом наличием R1 = 15 Ом (на порядок меньше!) можно смело пренебрегать.

Также предсказуемо падает и ток в цепи, и суммарная мощность, в ней рассеиваемая — напряжение не меняется, суммарное сопротивление растет. Все ожидаемо.

А вот график мощности, рассеиваемой на переменно резисторе W2 имеет весьма необычную форму — мощность, выделяемая на этом резисторе сначала растет, а потом падает.
Если подумать — так и должно быть, ведь пока сопротивление переменного резистора мало он мало влияет на силу тока цепи I (она фактически задается постоянным значением R1) и мощность, выделяемая на R2 растет вместе с ростом R2. А когда R2 велико, то уже R1 не влияет на силу тока, она определяется исключительно значением R2 и падает пропорционально его росту.

Но это я пока картинку не увидел — не осознал.

С практической точки зрения — стоит максимуму выделяемой мощности вылезти за паспортные ограничения резистора, так он и сгорит. Причем не сразу, а когда «неудачно карты лягут» и эта максимальная мощность выделиться.

Теперь при помощи того же Excel-я попробуем прикинуть как ведет себя мощность W2 для разных номиналов токоограничивающего резистора. Опять же при U = 5 Вольт.

Понятно, что чем больше R1, тем ниже максимум мощности, выделяемой на переменном резисторе R2.
И чтобы не превысить ограничения в 0.5 Вт достаточно взять токоограничивающий резистор где-нибудь в 15 Ом — неожиданно небольшое значение…

А теперь попробуем со всем этим взлететь все это посчитать.
Cамо положение максимума мощности нам не слишком интересно, нам важно только то, чтобы этот максимум не превосходил паспортных ограничений по мощности:

С учетом того, что умножаем на него обе части неравенства и раскрываем скобки:

А теперь переносим все на одну сторону и собираем коэффициенты при одинаковых степенях R2:

Мы получили неравенство относительно квадрата переменного сопротивления R2.

Т.к. коэффициент при R2 в квардрате у нас больше нуля, то в левой части мы имеем параболу «рожками вверх». Неравенство будет выполняться при любых значениях R2 если квадратное уравнение в левой части не будет иметь решений. А это, как известно из школьной математики, происходит тогда и только тогда, когда дискрименнант этого квадратного уравнения меньше нуля.

считается по формуле

Подставим в нее коэффициенты нашего уровнения:

… заметим, что в получившимся выражении два члена взаимно уничтожаются и избавимся от них

Квадрат напряжения больше нуля всегда, следовательно, чтобы дискриминант был меньше нуля необходимо:

Итак, для того, чтобы переменный резистор не вышел за пределы своих возможностей, необходимо применять токоограничивающий резистор с сопротивлением не менее, чем:

Для напряжения цепи 5 Вольт и ограничения по рассеиваемой на переменном резисторе мощности в 0.5 Вт получаем, что номинал токоограничивающего резистора R1 должен быть не меньше, чем 25/2= 12.5 Ом.

Однако, сам токоограничивающий резистор также имеет ограничения по рассеиваемой мощности.
Наибольший ток протекает через токоограничивающий резистор в момент, когда переменный резистор выведен в «0» и вся мощность рассеивается на токоограничивающем резисторе.

Исходя из этого (R2=0), получаем ограничение на токоограничивающий резистор

Тут уже для напряжения цепи 5 Вольт и обычного резистора с максимальной рассеиваемой мощностью в 0.25 Вт получаем, что номинал R1 не должен превосходить 100 Ом, что автоматически выполняет и ограничение по мощности на переменном резисторе, однако не позвволяет получить максимальный ток в цепи более 50 мА, что маловато.

Это ограничение можно обойти или взяв в качестве токоограничивающего резистора резистор помощнее или подключив несколько резисторов параллельно…

Как рассчитать резистор для светодиода?

Светодиодное освещение прочно вошло в нашу жизнь. Основные достоинства – низкое энергопотребление, высокая яркость, минимальные размеры. Светодиод представляет собой полупроводниковый элемент с электронно-дырочной проводимостью. При пропускании через него электрического тока в прямом направлении он создает оптическое излучение в узком диапазоне. Собственное низкое сопротивление и чувствительность к величине силы тока, является основной причиной того что при включении данного элемента в электрическую цепь необходимо использовать токоограничивающий резистор. Как рассчитать и правильно подобрать данную деталь для конкретных условий применения рассмотрим более подробно.

Расчет токоограничивающего резистора для светодиода

В интернете можно встретить множество калькуляторов с помощью которого можно рассчитать необходимое сопротивление резистора для эффективной и длительной работы любого светодиода. Но не всегда компьютер может быть под рукой, а токоограничивающий резистор необходимо установить именно в данный момент. Вот для этого и нужно знание элементарных правил.

Светодиоды, как и все элементы могут быть включены в цепь параллельно или последовательно. Первый вариант не является надежным в принципе. Суть в следующем: при таком виде включения, напряжение на светодиодах будет одинаковым, но так как практически невозможно подобрать полупроводниковые приборы с идеальными идентичными характеристиками, сила тока на светодиодах может оказаться разной по величине. Один будет светить вполнакала, а второй может работать при удвоенной нагрузке и быстро выйдет из строя. Данное неудобство исключено при последовательном включении светодиодов (или его одиночной установке).

Подбор резистора для светодиода необходимо начинать с выяснения характеристик самого светодиода, а именно значение падения напряжения на светодиоде (U св) и номинальный ток (I св) при нормальной работе. Эти данные можно найти в соответствующей сопроводительной документации или в специальных каталогах. Также необходимо будет знать напряжение источника питания (U).

Расчет сопротивления (R) токоограничивающего резистора для конкретного светодиода производится по формуле: R = (U Uсв)/ Iсв, что собственно следует из закона Ома.

Читайте также  Акустический автомат лестничного освещения на симисторе

Рассмотрим наглядно какой резистор нужен для светодиода КИПД06А-1К при напряжении источника питания 220 В. Из соответствующих справочников выясняем, что номинальный ток (I св) для данного источника света составляет 25 мА, а падение напряжения (U св) при этом равно 5,5 В.

Используя вышеприведенную формулу можем рассчитать сопротивление резистора (R) для обеспечения нормальной работы данного светодиода.

Далее, после получения необходимой величины сопротивления в омах, переходим к непосредственно к подбору резистора для светодиода соответствующей марки. Возвращаясь к параллельному соединению светодиодов нужно уточнить, что оно возможно, если в дополнение к каждому источнику света будет идти собственный токоограничивающий резистор.

Подбор токоограничивающего резистора для светодиода

После того как необходимое сопротивление резистора было вычислено, необходимо определиться с выбором соответствующей детали. Здесь могут возникнуть некоторые сложности. Дело в том, что не всегда можно подобрать резистор для светодиода, полностью соответствующий по вычисленным параметрам.

Проблема решается двумя способами:

Первый способ.

Необходимо подобрать резистор для светодиода, сопротивление которого будет выше необходимого. При этом не стоит сильно завышать этот параметр. Дело в том, что при увеличении сопротивления, будет теряться световая мощность источника, т.е. он будет менее ярким, но при этом прослужит значительно дольше. Оптимальным является превышение необходимого значение в пределах 20-30%.

Второй способ.

Второй способ основан на законе Ома, согласно которому при последовательном соединении резисторов их собственное сопротивление суммируется. Таким образом, при невозможности подбора для светодиода токоограничивающего резистора сопротивлением 8,58 кОм (как в нашем случае), можно взять несколько деталей с необходимыми параметрами. Это в принципе является оптимальным вариантом, вследствие более точного результата. Естественно ограничением будет являться сама возможность установки нескольких резисторов в электрической цепи.

Также при подборе резистора необходимо обращать внимание на его мощность. Это обусловлено тем, что при работе выделяется тепло и при недостаточной мощности данная деталь может просто перегореть. Это в свою очередь приведет к разрыву цепи и отключению светодиодных источников света.

Расчет ограничивающего ток резистора для светодиода, формулы и калькулятор

Часто при изготовлении разнообразных устройств возникает необходимость использовать светодиоды и светодиодные индикаторы. Будем полагать что вы знаете что такое светодиод и какие они бывают.

Подключение светодиода к источнику питания выполняется, как правило, через ограничивающий ток резистор (гасящий резистор). Ниже описаны принципы и формулы для расчета гасящего резистора, а также небольшой калькулятор для быстрого подсчета.

Расчет гасящего резистора для светодиода

Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания.

Рис. 1. Схема подключения светодиода к источнику питания через резистор.

Как видим из схемы, ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL). Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.

Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники.

Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.

Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):

  • красный — 1,8. 2В;
  • зеленый и желтый — 2. 2,4В;
  • белые и синие — 3. 3,5В.

Допустим что мы будем использовать синий светодиод , падение напряжения на нем — 3В.

Производим расчет напряжения на гасящем резисторе:

Uгрез = Uпит — Uсвет = 5В — 3В = 2В.

Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.

Допустим что для нашего светодиода номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:

R = U / I = 2В / 0,02А = 100 Ом.

В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести расчет мощности резистора:

P = U * I = 2В * 0,02А = 0,04 Вт.

Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт).

Произведем расчет для красного светодиода (напряжение 2В, ток 15мА).

Uгрез = Uпит — Uсвет = 5В — 2В = 3В.

R = U / I = 3В / 0,015А = 200 Ом.

P = U * I = 3В * 0,015А = 0,045 Вт.

Простой калькулятор для расчета гасящего резистора

Теперь вы знаете как по формулам рассчитать гасящий резистор для питания светодиода. Для облегчения расчетов написан несложный онлайн-калькулятор:

Форму прислал Михаил Иванов.

Заключение

При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр.

Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.

Подбор токоограничивающего резистора для светодиода

Светодиод – это полупроводниковый элемент электрической схемы. Его особенностью является нелинейная вольт-амперная характеристика. Стабильность и срок службы прибора во многом обусловлены силой тока. Малейшие перегрузки приведут к ухудшению качества светодиода (деградации) или его поломке.

Зачем резистор перед светодиодом.

В идеале для работы диоды следует подключать к источнику постоянного тока. В этом случае элемент будет работать стабильно. Но на практике для подключения чаще всего используют более распространенные блоки питания с постоянным напряжением. При этом для ограничения силы тока, которая протекает через LED элемент, нужно включать в электрическую цепь дополнительное сопротивление − резистор. В статье рассмотрены методы расчета резистора для светодиода.

Когда следует подключать светодиод через резистор

Существует несколько случаев, когда такая электрическая схема уместна. Во-первых, токоограничивающий резистор стоит использовать, если эффективность схемы не первоочередная задача. В качестве примера можно привести применение светодиода в качестве индикатора в приборах. В таком случае важно самом свечение, а не его яркость.

Во-вторых, применение резистора оправдано в случаях, когда необходимо выяснить полярность и работоспособность LED элемента. Одним из методов является подключение прибора к блоку питания. В этом качестве часто используют аккумуляторы от мобильных телефонов или батарейки. Напряжение на них может достигать 12 В. Это очень высокая величина, и прямое подключение светодиода приведет к поломке. Для ограничения напряжения в цепь вставляют резистор.

В-третьих, резистор используют в исследовательских целях для изучения работы новых образцов светодиодов.

В других случаях можно воспользоваться драйвером – прибором, стабилизирующим ток.

Математический расчет.

Для подбора сопротивления придется вспомнить школьный курс физики.

На рисунке представлена простая последовательная электрическая схема соединения резистора и диода. На схеме применены следующие обозначения:

  • U – входное напряжение блока питания;
  • R – резистор с падением напряжения UR;
  • LED – светодиод с падением напряжения ULED (паспортное значение) и дифференциальным сопротивлением RLED;

Поскольку элементы соединены последовательно, то сила тока I в них одинакова.

По второму закону Кирхгофа:

Одновременно используем закон Ома:

Читайте также  Проверка светодиодов мультиметром

Подставим формулу (2) в формулу (1) и получим:

Путем простых математических преобразований из формул (1) и (3) найдем искомое сопротивление резистора R:

Для более точного подбора можно рассчитать мощность рассеивания резистора Р.

Примем напряжение блока питания U = 10 В.

Характеристики диода: ULED = 2В, I = 40 мА = 0,04A.

Подставим нужные цифры в формулу (4), получим: R = (10 — 2) / 0,04 = 200 (Ом).

Мощность рассеивания (5): составит Р = (10 – 2) * 0,04 = 0,32 (Вт).

Графический расчет.

При наличии вольт-амперной характеристики несложно определить сопротивление резистора графическим способом. Метод применяется редко, но полезно про него знать.

Для определения искомого сопротивления нужно знать ток нагрузки ILED и напряжение блока питания U. Далее следует перпендикуляр, соответствующий значению тока, до пересечения с вольт-амперной кривой. Затем через точку на графике и значению U провести прямую, которая покажет на оси тока максимальное его значение IMAX. Эти цифры подставляем в закон Ома (2) и вычисляем сопротивление резистора.

Например, ILED = 10 мА, а U = 5 В. По графику IMAX примерно равна 25 мА.

По закону Ома (2) R = U / IMAX = 5 / 0,025 = 200 (Ом).

Примеры вычислений сопротивления для светодиода.

Разберем некоторые наглядные случаи вычисления сопротивления элемента в конкретных схемах.

Вычисление токоограничивающего сопротивления при последовательном соединении нескольких светодиодов.

Из курса физики известно, что в такой схеме значение тока постоянное, а напряжение на LED элементах суммируется.

Возьмем напряжение источника питания U = 12 В.

Характеристики диодов одинаковы: ULED = 2В, ILED = 10 мА.

Преобразуем формулу (4), учитывая три LED элемента.

R = (12 – 3* 2) / 0,01 = 600 (Ом).

Мощность рассеивания (5) составит: Р = (12 – 2 * 3) * 0,01 = 0,6 (Вт).

Вычисление сопротивления при параллельном соединении светодиодов.

В этом случае постоянным сохраняется напряжение, а силы тока складываются. Поэтому при тех же входных данных (напряжение источника питания U = 12 В, напряжение и ток на диодах ULED = 2В, ILED = 10 мА), расчет будет несколько другим.

Используем формулу (4), учитывая три LED элемента.

R = (12 – 2) / 3*0,01 = 333,3 (Ом).

Мощность рассеивания (5) составит: Р = (12 – 2) * 3*0,01 = 0,3 (Вт).

Однако данное подключение не стоит применять на практике. Даже светодиоды из одной партии не гарантируют одинакового падения напряжений. Из-за этого ток на отдельном LED элементе может превысить допустимый, что может спровоцировать выход элементов из строя.

Для параллельного соединения светодиодов необходимо к каждому из них подключать свой резистор.

Вычисление сопротивления при параллельно-последовательном соединении LED элементов.

Для подключения большого количества светодиодов уместно использовать параллельно-последовательную электрическую схему. Поскольку в параллельных ветках напряжение одинаковое, то достаточно узнать сопротивление резистора в одной цепи. А количество веток не имеет значения.

Напряжение блока питания U = 12 В.

Характеристики диодов одинаковы: ULED = 2В, ILED = 10 мА.

Максимальное количество LED элементов n для одной ветки рассчитывается так:

В нашем случае n = (12 — 2) / 2 = 5 (шт).

Сопротивление резистора для одной ветки:

Для трех светодиодов оно составит: R = (12 – 3*2)/ 0,01 = 600 (Ом).

Расчет резистора для светодиода. Онлайн калькулятор

Светодиод (светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.

Такой резистор часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.

Расчет резистора для светодиода

Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:

  • V — напряжение источника питания
  • VLED — напряжение падения на светодиоде
  • I – рабочий ток светодиода

Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:

Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы (драйверы для светодиодов) которые обладают большей эффективностью.

Давайте, на примере выполним расчет сопротивления резистора для светодиода.

  • источник питания: 12 вольт
  • напряжение светодиода: 2 вольта
  • рабочий ток светодиода: 30 мА

Рассчитаем токоограничивающий резистор, используя формулу:

Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из номинального ряда резисторов подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).

Последовательное соединение светодиодов

Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.

Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.

Пример расчета сопротивления резистора при последовательном подключении.

В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.

Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.

Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:

Резистор должен иметь значение не менее 183,3 Ом.

Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)

Параллельное соединение светодиодов

Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.

Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.

И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.

Онлайн калькулятор расчета резистора для светодиода

Этот онлайн калькулятор поможет вам найти нужный номинал резистора для светодиода, подключенного по следующей схеме:

примечание: разделителем десятых является точка, а не запятая

Формула расчета сопротивления резистора онлайн калькулятора

Сопротивление резистора = (U UF)/ I F

  • U – источник питания;
  • UF – прямое напряжение светодиода;
  • IF – ток светодиода (в миллиамперах).

Примечание: Слишком сложно найти резистор с сопротивлением, которое получилось при расчете. Как правило, резисторы выпускаются в стандартных значениях (номинальный ряд). Если вы не можете найти необходимый резистор, то выберите ближайшее бо́льшее значение сопротивления, которое вы рассчитали.

Например, если у вас получилось сопротивление 313,4 Ом, то возьмите ближайшее стандартное значение, которое составляет 330 Ом. Если ближайшее значение является недостаточно близким, то вы можете получить необходимое сопротивление путем последовательного или параллельного соединения нескольких резисторов.