Как рассчитать щуп осциллографа?

Щуп-осциллограф

При ремонте и настройке аппаратуры где-нибудь вдали от хорошо оснащенной лаборатории, незаменимыми помощниками радиолюбителя становятся «братья меньшие» измерительных приборов — всевозможные пробники, индикаторы и Щупы. Наверняка, в арсенале любого специалиста найдется хотя бы одно, а то и несколько подобных устройств. Но вот похвалиться наличием малогабаритного осциллографа может далеко не каждый. Появившиеся в последнее время импортные осциллографы на ЖКИ по своей цене доступны единицам. А так хотелось бы иметь малогабаритный прибор, позволяющий визуально контролировать сигнал и хотя бы примерно определять его форму, частоту и амплитуду!

В результате многочисленных экспериментов на свет появился малогабаритный осциллографический щуп. К его «плюсам» следует отнести малогабаритность, автономное питание, малое энергопотребление, удобную форму, позволяющую, не отрывая взгляда от пробника, производить регулировку и ремонт аппаратуры. К сожалению, из-за применяемых микросхем, не отличающихся высоким быстродействием, щуп получился низкочастотным, но ему можно найти массу применений. Например, щуп прошел испытания при ремонте и настройке телевизоров, часов, магнитофонов и других аналоговых и цифровых устройств. Как и настоящий осциллограф, щуп позволяет визуально контролировать входной сигнал и примерно определять его параметры, а также служит индикатором фазного провода сети. Схема щупа приведена на рис.1.


Рис.1. Принципиальная схема щупа

Его основой является светодиодная матрица АЛС340, которая содержит 35 светодиодов — 7 рядов по 5 колонок.

Генератор тактовых импульсов (развертки по горизонтали) собран на элементах DD1.1. DD1.3. Переключателем SA1 выбирают необходимый частотный диапазон, а резистором R3 синхронизируют сигнал. С генератора импульсы поступают на счетчик-дешифратор DD2, выходы которого управляют работой транзисторных ключей. Ключи поочередно перебирают ряды матрицы, за счет чего формируется развертка по горизонтали. Хотя разрешающая способность матрицы и невелика, она все же способна отобразить синусоиду, прямоугольные импульсы, пилу и другие периодические сигналы. Особенно эффективно и «удобочитаемо» смотрится сигнал, находящийся у порога синхронизации. Тогда он перемещается в одну из сторон, что во многих случаях предпочтительнее полной остановки.

Устройство вертикального отклонения луча состоит из конденсатора С1, переключателя SA2, позволяющего контролировать постоянное или переменное напряжение, резистивного делителя R1-R4-R5, переключателя SA3, выбирающего необходимый диапазон входного сигнала, четырех компараторов микросхемы DA1 и элементов совпадения DD1.4, DD3. Диоды VD1, VD2 защищают входы компараторов от перегрузок. Резисторы R6. R11 устанавливают пороговые напряжения на компараторах, с одной стороны, а с другой — создают «виртуальную землю», необходимую для нормальной работы микросхемы DA1.

Когда входной сигнал отсутствует, все компараторы выключены, и поэтому в устройстве совпадения активным является элемент DD1.4. В этом случае излучают светодиоды средней колонки, образуя нулевую линию развертки. При появлении входного сигнала положительной полярности поочередно срабатывают компараторы DA1.1, DA1.2, а отрицательного — DA1.3, DA1.4. Логика устройства совпадения выбрана такой, чтобы в случае срабатывания всех компараторов горели только крайние светодиоды. Это позволило добиться на экране изображения из цепочки светящихся точек, объективно передающих информацию о форме исследуемого сигнала. Резисторы R12. R16 — токоограничительные для светодиодной матрицы. Уменьшая их сопротивление, можно повысить яркость, но это повлечет за собой увеличение энергопотребления щупа. Элементы VT8, VT9, VD3 образуют стабилизатор напряжения.

В авторском варианте щуп собран в корпусе от «Знакового логического индикатора», выпускавшегося ранее нашей промышленностью. Его вид изображен на рис.2. В нем вместо «родного» индикатора АЛС324 установлена матрица АЛС340. Монтаж деталей — смешанный (печатно-навесной), что обусловлено его большой плотностью. Компоновка и размеры щупа в основном определяются используемыми переключателями и переменными резисторами. В качестве корпуса можно использовать любую пластиковую коробочку, например, футляр от зубной щетки, авторучки, пенал. Светодиодная матрица устанавливается в нижней части корпуса вблизи металлической иглы-щупа, туда же выводятся органы регулировки. Монтаж выполнен тонким проводом МГТФ.


Рис.2. Схема монтажа

Источник питания — батарейка 6F22 или «Крона». В качестве SA3 и SA4 использованы микропереключатели ПД9-2, SA1 совместно с SA2 — блок переключателей от импортного сетевого адаптера. Переменные резисторы R3, R5 — регуляторы громкости плейера. Эти элементы могут быть и другими, главное, чтобы они были малогабаритными. Вместо АЛС340 можно установить АЛ306А, Б, Ж, И. Стабилитрон VD3 — в стеклянном корпусе. Конденсатор С1 — К73-9, С2. С7 — керамические, малогабаритные. Все микросхемы серии К561 заменяются на К176. Вместо К561ИЕ8 можно применить К561ИЕ9 (с учетом различий в цоколевке). Счетверенный ОУ К1401УД2 можно заменить на два сдвоенных К157УД2, установив их друг на друга.

Щуп, собранный из заведомо исправных деталей, начинает работать сразу. Возможно, придется подобрать величину R2 — для небольшого перекрытия соседних диапазонов, и R8, R11 -для равномерного срабатывания компараторов положительного и отрицательного сигналов. Работа со щупом практически ничем не отличается от работы с обыкновенным осциллографом.

Сделай сам своими руками О бюджетном решении технических, и не только, задач.

Как изготовить кабель-щуп для низкочастотного виртуального осциллографа?

Как изготовить кабель-щуп для низкочастотного виртуального осциллографа?

О том, как изготовить простой низкочастотный кабель-щуп для осциллографа. https://oldoctober.com/

Подобный кабель целесообразно изготовить, даже имея набор профессиональных кабелей. Благодаря тонкому, гибкому проводу и небольшим габаритам, он может стать хорошей альтернативой громоздким и неудобным промышленным кабелям. Конечно, область применения ограничивается ремонтом аудиотехники, но если использовать виртуальный осциллограф на основе аудиокарты, то более серьёзный кабель может никогда и не понадобится.

Самые интересные ролики на Youtube

Близкие темы.

Конструкция и детали.

В качестве корпуса для щупа подойдёт оболочка от фломастера или маркера. Экранированный провод тоже сгодится любой, хотя лучше выбрать более эластичный.

На чертеже изображён щуп в разрезе. https://oldoctober.com/

  1. Остриё – цыганская игла.
  2. Защитная трубка – кембрик.
  3. Втулка – сталь или латунь.
  4. Стопорный винт – М3, сталь.
  5. Корпус – оболочка маркера.
  6. Кабель – провод экранированный.
  7. Отверстие в корпусе – Ø3мм.
  8. Втулка – М3, латунь.
  9. Общий провод.
  10. Скоба – узел крепления общего провода, латунь.
  11. Шайба – М3, сталь.
  12. Зажим – латунь.
  13. Стопорный винт – М3, сталь.
  14. Отверстие в заглушке – Ø3мм.
  15. Заглушка – оболочка маркера.
  16. Защитная трубка – кембрик.

Втулка поз.3 вклеена в отверстие оболочки маркера. Диаметр отверстие во втулке поз.3 чуть больше диаметра иглы.

Стопорный винт поз.4 фиксирует иглу во втулке поз.3.

Экранирующая оплётка кабеля припаяна к втулке поз.12, а центральный провод к игле поз.1.

Стопорный винт поз.13 фиксирует кабель во втулке поз.12.

Втулка поз.8 вкручивается в зажим поз.12, предварительно пройдя через отверстия поз.7, поз.14 и отверстие в шайбе поз.11. Таким образом, втулка поз.8 обеспечивает соединение всех элементов конструкции.

На этой картинке можно увидеть, как выглядят внутренности щупа в реальности.

Вот, что получилось.

Мелкие подробности.

Остриё щупа изготовлено из цыганской иголки.

Самая удобная и универсальная форма острия – трёхгранная.

Зажим поз.12 извлечён из электрической клеммы, которую можно купить в любом хозяйственном магазине.

Вот вроде и всё описание.

Комментарии (16)

Страниц: « 1 [2] Показать все

Юрий, Вы его, наверное, собрали неправильно. У моего щупа только игла незаэкранированна. Посмотрите внимательно на чертёж. Экранирующая оплётка кабеля освобождена от изоляции и к ней припаяна перемычка, которая соединяет оплётку с зажимом поз.12. Таким образом, экранирующая оплётка кабеля поз.6 защищает «горячий» провод по всей длине и кончается рядом с той точкой, где «горячий» провод соединения с иглой поз.1.

Из чего изготовлена (подобрана) деталь 8? Она не имеет электрического соединения с проводом 9? Если нет, примерное расстояние этого «разрыва»?

Сергей, самодельный низкочастотный щуп для осциллографа изготовлен про традиционной схеме, хотя и с незначительным изменениями. А именно, центральный провод коаксиального кабеля подключается к заострённому контакту на конце щупа, а экранирующая оплётка кабеля к проводнику с зажимом типа «крокодил» на конце. Латунная втулка поз.8 имеет небольшое углубление, в которое впаивается провод заземления и лепесток удерживающий этот провод за изоляцию. Такая конструкция, в отличие от традиционной, предотвращает переламывание провода радом с пайкой и обеспечивает длительную работу заземления.

Спасибо за подробное объяснение простого вопроса. Все понял.

По моему, это щуп не для виртуального осциллографа. У него нет такого разъема. Там стоит джек, или USB.

Почитал материал, и понял, что я не прав. Этот разъем, подключает щуп к адаптеру-переходнику, стоящему по входу аудиокарты. Очень интересная и полезная статья.

Страниц: « 1 [2] Показать все

Логический щуп — осциллограф

Известно большое количество логических щупов. Каждому, кто работает с логическими микросхемами, хотелось бы иметь простой, надёжный и с повышенными метрическими характеристиками прибор для проверки и настройки логических схем. К этому хотелось бы добавить дешевизну и удобство в обращении.

Именно такую цель преследовал автор при разработке своего логического щупа. Известный «Импульсный матричный осциллограф» [1] имеет большие размеры, громоздкую схему и неудобен в работе. Преимущество упомянутого прибора перед предлагаемым, только в наличии функции измерения амплитуды. Необходимость измерения размаха импульсов в пределах 0,5:30 В, в широко распространенной логике, сомнительна.

Прибор, названный автором: логический щуп — осциллограф (далее для краткости — щуп), имеет следующие возможности.

  • Минимальная длительность измеряемого импульса — 1 микросекунда.
  • Количество точек дискретизации — 24 (48).
  • Длительность развертки: 1;10;20;100;200 микросекунд.
  • Возможность использования в качестве источника стабильной частоты.
  • Размер (Д, Ш, В): 180x30x20, без учета иглы и клювика переключателя развертки.
  • Потребляемый ток при выключенных светодиодах (48) — 6,5mA.
  • Потребляемый ток при всех включенных светодиодах (48) — 160mA.
  • Блок питания — адаптер на 5В и 9В.

Схема щупа изображена на рисунке 1. Функционально щуп состоит из следующих блоков. Задающий кварцевый генератор собран на элементах DD2.1; DD2.6; DD2.5. Делитель частоты — на микросхемах DD4 и DD6. Блок управления, состоящий из триггера пуска и ключа, собран на элементах DD1.2 — DD1.4. Формирователь короткого импульса — C3; R4; DD2.2 — DD2.4. Входной формирователь — DD1.1. Последовательные регистры развертки собраны на микросхемах DD3; DD5; DD7. Индикатор — на светодиодах HL1 — HL24 и резисторах R6 — R29.

Идея прибора заключается в том, чтобы запоминать последовательно во времени логический уровень входного сигнала и отображать его на индикаторе. Точность измерения таким способом не может превышать (по критерию Нейквиста) половины времени квантования. Проще говоря, если мы измеряем импульс длительностью 1 микросекунда на пределе развёртки 1 микросекунда, то результат получим с точностью 50 процентов. Если длительность импульса 100 миллисекунд, на том же пределе получим точность 0,5 процента. Поэтому автор стремился к увеличению количества точек квантования. Схема показана на 24 разряда, хотя мною изготовлен щуп на 48 разрядов и все данные, приведенные выше, относятся к последнему варианту. Увеличение разрядности достигается увеличением числа микросхем регистров, о чем мы поговорим ниже.

Читайте также  Arm. stm32 быстрый старт

Кварцевый генератор собран по известной схеме, многократно описываемой в журнале Радио, поэтому в описании не нуждается. Импульсы с частотой 1мГц, с вывода 10 DD2.5, поступают на вход 2 пятиразрядного, двоично-десятичного счетчика DD4. Счетчик включен по схеме десятичного делителя с использованием пятого разряда для увеличения диапазона развертки. Таким образом, счетчик делит исходную частоту на 10 и 20. Включение счетчика по известным и рекомендуемым [2] схемам вызвало неустойчивую работу. Поэтому управляющий вывод А (вывод 1) подключен к выходу третьего разряда (вывод12). При такой схеме включения временная диаграмма работы микросхемы соответствует рисунку 16 книги С.А.Бирюкова [2]. Микросхема работает устойчиво. Импульсы с длительностью периода 1, 10, 20, 100, 200 микросекунд подаются на переключатель SA (развертка), откуда, выбранная длительность развертки поступает на ключ DD1.4(13). Второй вывод ключа (12) подключен к RS-триггеру блока управления. Триггер управляется кнопкой S3 (пуск). При нажатой кнопке S3 на вывод 12 ключа будет подаваться логическая единица, разрешающая прохождение импульсов. На выходе ключа DD1.4(11) импульсы дифференцируются цепочкой C3,R4 формируются инверторами DD2.2-DD2.4 и подаются на синхронизирующие входа регистров. Обострение импульсов происходит по фронту и необходимо для того, чтобы исключить неоднозначность при сохранении данных в регистрах.

Входные импульсы поступают на инвертор DD1.1 и, в зависимости от положения переключателя S1, проходят на вход регистра в прямом или инвертированном виде. При поступлении импульса синхронизации на вход С, в первый разряд регистра записывается логическое состояние присутствующее в этот момент на входе D. В последующих разрядах информация сдвигается в сторону увеличения на один разряд. Каждая микросхема ИР2 состоит из двух четырехразрядных секций сдвигающих регистров. Поэтому информационный вход D(15) следующей секции подключен к выходу (10) четвертого разряда предыдущей секции. Таким образом, три корпуса дают 24 разряда квантования входного сигнала.

Поскольку все микросхемы ТТЛ и КМОП имеют больший выходной ток в состоянии логического нуля, то и светодиоды HL подключены так, чтобы зажигались при логическом нуле на выходах регистров. Привычнее видеть в горящем светодиоде уровень логической единицы, поэтому на кнопке S1 входной сигнал обозначен как инверсный.

При нажатой кнопке S3 (пуск) информация записывается в регистры, при отпущенной — сохраняется. При просмотре индикатора необходимо учитывать то, что каждый светодиод соответствует длительности установленной развертки. Если развертка установлена на «1» и подряд горит 5 разрядов, то длительность импульса равна 5 микросекундам. Если горят все разряды, то надо переключиться на большее время развертки. Собственно, выбором времени развертки щуп и оправдывает свою приставку — осциллограф. Конденсатор С4 и резистор R3 образуют дифференцирующую цепочку, через которую, по спаду импульса с последнего разряда, опрокидывается триггер. Низкий уровень с выхода 10 DD1.2 закроет елемент DD1.4 для прохождения импульсов записи на регистры. Низкий уровень на выходе регистра включает светодиод. Таким образом, начало инвертированного исследуемого одиночного (периодического) импульса всегда будет наблюдаться на последнем разряде. Т.е. последний разряд всегда будет светиться.

Для контроля работоспособности прибора введен дополнительный переключатель S2 (контроль 0,1ms). Этот контроль был выбран потому, что импульс с выхода 11 счетчика ИЕ2 имеет скважность 5. 20ms длительность логической единицы и 80ms длительность логического нуля.

Гнездо XS, в варианте щупа 24 разряда, используется для выдачи импульсов на проверяемые микросхемы при нажатой кнопке «пуск». При наличии на переключателе SA свободного положения кнопка «пуск» будет задавать на XS единичные импульсы, что бывает необходимо при проверке триггерных схем.

Вариант щупа 48 разрядов может использоваться как двух лучевой по 24 разряда и как однолучевой на 48 разрядов. Увеличение числа разрядов, как говорилось выше, дает увеличение точности измерения длительности импульса. Схематически 48 разрядов получается добавлением трех регистров ИР2, подключенных идентично регистрам DD3, DD5, DD7, но без входного инвертора. При подключении обоих входов щупа на просмотр одного сигнала и при включении одного луча на просмотр прямого сигнала, а второго луча — инверсного сигнала, на индикаторе высвечивается импульс, как на экране осциллографа. При подключении входа дополнительного блока регистров к 24 разряду получаем 48 разрядов, причем, импульс наблюдается в полярности, определенной переключателем S1.

Для работы с ТТЛ логикой необходимо снизить питающее напряжение до 5 В. При этом яркость свечения индикатора уменьшится.

В щупе используются резисторы МЛТ 0,125, конденсаторы: C2 — КМ6, С3 — КМ5б, С1 — малогабаритный импортный. Переключатель SA — МПН-1 на одно направление и 10 положений. Кварц — РГ-06 1000кГц. Кнопки S1-S3 — МП7. Светодиоды — АЛ102БМ в металлическом корпусе. Гнездо XS — малогабаритное, диаметром 1мм. Микросхемы 564 серии с планарными выводами. Возможны любые замены деталей с подходящими характеристиками, что повлияет на размеры печатной платы и корпуса. При замене микросхем желательно выбирать 164 серию. Микросхемы серии 561 не имеют в своем составе счетчиков ИЕ2 и, их придется менять серией 176. Хотя многие микросхемы из этой серии могут работать при напряжении питания 5В, появится необходимость подбора на устойчивость работы при пониженном напряжении. При замене кварца максимальная частота составляет 8мГц, т.к. паспортная частота КМОП — микросхем — 5мГц. При этом необходимо помнить о неудобстве подсчета длительности импульса и ориентироваться на стоящие перед вами задачи. Скажем, если приходится часто измерять импульсы большой длительности, то частоту кварца можно соответственно уменьшить и наоборот.

Печатная плата представлена на рис.2, а схема расположения элементов — на рис.3. Красным цветом обозначены соединительные линии и элементы расположенные с обратной стороны установки микросхем. Плата изготовлена из двухстороннего фольгированного стеклотекстолита толщиной 1мм. Переходные отверстия просверлены сверлом диаметром 0,6мм. Два отверстия в передней части платы имеют диаметр 3мм. Первое отверстие — крепежное, второе необходимо для прохождения конца гнезда. Само гнездо крепится к верхней крышке корпуса. 4 отверстия диаметром 1мм предназначены для крепежа кнопок МП7, который осуществляется заклепками из медной проволоки. Кнопка S1 установлена с обратной стороны платы напротив кнопки S2. Два ползунка для фиксирования кнопок S1,S2 выточены надфилем из подходящей пластмассы. Пружинка для кнопки S3 сделана из контактной пластины реле типа РПУ, кнопка пуска — из текстолита. Конденсаторы С1, С2 установлены с обратной стороны. Резистор R4 расположен под микросхемами, а резисторы R1, R2 запаиваются после установки кварца.

На рис. 4 дана печатная плата индикатора и расположение элементов на ней. Сначала устанавливаются светодиоды так, чтобы их корпуса не соприкасались, затем, со стороны печатной платы, запаиваются резисторы.

Корпус склеен эпоксидной смолой из стеклотекстолита. В корпусе проделаны отверстия для крепления щупа, ползунков, переключателя и три отверстия для стяжных винтов. Винты устанавливаются следующим образом: один в центре впереди и к нему прикручивается плата с элементами, два других — по краям сзади. В месте крепления платы с элементами имеется корпусная площадка, поэтому на винт подается отрицательное питающее напряжение. Под гайкой этого винта прикрепляется провод с зажимом «крокодил» для соединения с минусом исследуемой схемы.

Монтаж выполнен проводом МГТФ-0,07. Плата с элементами устанавливается в корпус элементами вниз, сверху кладется без крепежа плата индикации и прижимается верхней крышкой. Крышка имеет отверстия под светодиоды и крепежные отверстия. На ней установлено также гнездо XS. С блоком питания щуп соединен проводом МГТФ-0,07.

Электроника для всех

Блог о электронике

Использование осциллографа

▌Старая статья о аналоговом осциллографе
Рано или поздно любой начинающий электронщик, если не бросит свои эксперименты, то дорастет до схем, где нужно отслеживать не просто токи и напряжения, а работу схемы в динамике. Особенно это часто нужно в различных генераторах и импульсных устройствах. Вот тут без осциллографа делать нечего !

Страшный прибор, да? Куча ручек, каких то кнопочек, да еще экран и нифига не понятно что тут да зачем. Ничего, сейчас исправим. Сейчас я тебе расскажу как пользоваться осциллографом.

На самом деле тут все просто — осциллограф, грубо говоря, это всего лишь… вольтметр ! Только хитрый, способный показывать изменение формы замеряемого напряжения.

Как всегда, поясню на отвлеченном примере.
Представь, что ты стоишь перед железной дорогой, а мимо тебя с бешеной скоростью мчится бесконечный поезд состоящий из совершенно одинаковых вагонов. Если просто на них стоять и смотреть, то ничего кроме размытой фигни ты не увидишь.
А теперь ставим перед тобой стенку с окошком. И начинаем открывать окошко только тогда, когда очередной вагон будет в том же положении, что и предыдущий. Так как у нас вагоны все одинаковые, то тебе совершенно необязательно видеть один и тот же вагон. В результате картинки разных, но идентичных вагонов будут выскакивать перед твоими глазами в одном и том же положении, а значит картинка как бы остановится. Главное это синхронизировать открытие окошка со скоростью поезда, чтобы при открытии положение вагона не менялось. Если скорость не совпадет, то вагоны будут «двигаться» либо вперед, либо назад со скоростью, зависящую от степени рассинхронизации.

На этом же принципе построен стробоскоп — девайс, позволяющий разглядывать быстро движущиеся или вращающиеся хреновины. Там тоже шторка быстро-быстро открывается и закрывается.

Так вот, осциллограф это тот же стробоскоп, только электронный . А показывает он не вагоны, а периодические изменения напряжения. У той же синусоиды, например, каждый следующий период похож на предыдущий, так почему бы не «остановить» его, показывая в один момент времени один период.

Конструкция
Делается это посредством лучевой трубки, отклоняющей системы и генератора развертки.
В лучевой трубке пучок электронов попадая на экран заставляет светится люминофор, а пластины отклоняющей системы позволяют гонять этот пучок по всей поверхности экрана. Чем сильней напряжение, приложенное к электродам, тем больше отклоняется пучок. Подавая на пластины Х пилообразное напряжение мы создаем развертку . То есть луч у нас движется слева-направо, а потом резко возвращается обратно и продолжает снова. А на пластины Y мы подаем изучаемое напряжение.

Принцип работы
Дальше все просто, если начало появления периода пилы (луч в крайне левом положении) и начало периода сигнала совпадают, то за один проход развертки нарисуется один или несколько периодов измеряемого сигнала и картинка как бы остановится. Меняя скорость развертки можно добиться того, что на экране вообще останется только один период — то есть за один период пилы пройдет один период измеряемого сигнала.

Развертка осциллографа во времени

Синхронизация
Синхронизировать пилу с сигналом можно либо вручную, подстраивая ручкой скорость так, чтобы синусоида остановилась, а можно по уровню . То есть мы указываем при каком уровне напряжения на входе нужно запустить генератор развертки. Как только напряжение на входе превысит уровень, так сразу же запустится генератор развертки и выдаст нам импульс.
В итоге, генератор развертки выдает пилу только тогда, когда надо. В этом случае синхронизация получается полностью автоматической. При выборе уровня следует учитывать такой фактор, как помехи. Так что если взять слишком низкий уровень, то мелкие иголки помех могут запустить генератор когда не нужно, а если взять уровень слишком большой, то сигнал может под ним пройти и ничего не случится. Но тут проще покрутить ручку самому и сразу же все станет понятно.
Также сигнал синхронизации можно подать и с внешнего источника.

Читайте также  Паста для соединения меди и алюминия

В топку теорию, переходим к практике.
Показывать буду на примере своего осциллографа, спертого когда то давно с оборонного предприятия КБ «Ротор» :). Обычный осцил, не шибко навороченный, но надежный и простой как кувалда.

Мой верный осциллограф

Итак:
Яркость, фокус и освещение шкалы думаю не требуют пояснений. Это настройки интерфейса.

Усилитель У и стрелочки вверх вниз. Эта ручка позволяет гонять изображение сигнала вверх или вниз. Добавляя ему дополнительное смещение. Зачем? Да иногда не хватает размера экрана, чтобы вместить весь сигнал. Приходится его загонять вниз, принимая за ноль не середину, а нижнюю границу.

Ниже идет тумблер переключающий ввод с прямого, на емкостный. Этот тумблер в том или ином виде есть на всех без исключения осциллографах.

Важная вещь! Позволяет подключать сигнал к усилителю либо напрямую, либо через конденсатор. Если подключить напрямую, то пройдет и постоянная составляющая и переменная . А через кондер проходит только переменная .

Например, надо нам посмотреть на уровень помех блока питания компа. Напряжение там 12 вольт, а величина помех может быть не более 0.3 вольт. На фоне 12 вольт эти жалкие 0.3 вольт будут совсем незаметны. Можно, конечно увеличивать коэффициент усиления по Y , но тогда график вылезет за экран, а смещения по Y не хватит, чтобы увидеть вершину. Тогда нам нужно лишь врубить конденсатор и тогда те 12 вольт постоянки осядут на нем, а в осциллограф пройдет только переменный сигнал, те самые 0.3 вольта помехи. Которые можно усилить и разглядеть в полный рост.

Далее идет коаксиальный разъем подключения щупа . Каждый щуп содержит в себе сигнал и землю . Землю обычно сажают на минус или на общий провод схемы, а сигнальным тычут по схеме. Осциллограф показывает напряжение на щупе относительно общего провода. Чтобы понять где сигнальный, а где земля достаточно взять за них рукой по очереди. Если возьмешься за общий, то на экране по прежнему будет пульс трупа. А если взяться за сигнальный, то увидишь кучу срача на экране — наводки на твое тело, служащее в данный момент антенной. На некторых щупах, особенно на современных осциллографах, внутри встроен делитель напряжения 1:10 или 1:100 , который позволяет воткнуть осциллограф хоть в розетку, без риска его спалить. Включается и выключается он тумблером на щупе.

Еще почти на каждом осциллографе есть калибровочный выход . На котором ты всегда можешь найти прямоугольный сигнал частотой 1Кгц и напряжением около полувольта . В зависимости от модели осцила. Используется для проверки работы самого осциллографа, ну иногда и в тестовых целях пригождается 🙂

Две здоровенные крутилки Усиление и Длительность

Усиление служит для масштабирования сигнала по оси Y . Там же показано сколько вольт на деление в итоге покажет.
Скажем, если у тебя стоит 2 вольта на деление, а сигнал на экране достигает высоты две клеточки размерной сетки, значит амплитуда сигнала равна 4 вольта.

Длительность определяет частоту развертки. Чем короче интервал, чем больше частота, тем более высокочастотный сигнал ты сможешь разглядеть. Тут клеточки проградуированы уже в милли и микросекундах. Так что по ширине сигнала ты можешь посчитать сколько он клеток, а умножив его на масштаб по оси Х получишь длительность сигнала в секундах. Также можно посчитать длительность одного периода, а зная длительность легко найти частоту сигнала f=1/t

Верхняя пипка на крутилках позволяет менять масштаб плавно. Обычно у меня она стоит на щелчке, чтобы я всегда четко знал какой у меня масштаб.

Также там есть вход Х на который можно подать свой сигнал, вместо пилы развертки. Таким образом осциллограф может послужить телевизором или монитором, если собрать схему которая будет формировать изображение.

Крутилка с надписью Развертка и стрелочками влево и вправо позволяет гонять график по экрану влево и вправо. Удобно иногда бывает, чтобы подогнать нужный участок под деления сетки.

Ручка уровня — задает уровень от которого будет стартовать генератор пилы.
Переключатель со внутренней на внешнюю , позволяет подать на вход синхроимпульсы с внешнего источника.
Переключатель с надписью +/- переключает полярность уровня. Есть не на всех осциллографах.
Ручка стабильность — позволяет вручную попытаться подобрать скорость синхронизации.

Быстрый старт.
Итак, включил ты осцил. Первое что нужно сделать это замкнуть сигнальный щуп на свой же земляной крокодил. При этом на экране должен появится «Пульс трупа». Если не появился, то покрути ручки стабилизации и смещений и уровня — возможно он просто спрятался за экран или не запустился из-за недостаточного уровня.

Как только появилась полоса, то выстави крутилками смещения её на ноль. Если у тебя аналоговый осцил, особенно если древний, то дай ему прогреться. У моего после включения ноль плавает еще минут пятнадцать.

Дальше выстави предел измерений по напряжению . Бери с запасом, если что уменьшишь. Теперь если земляной провод осциллографа приложишь к минусу батарейки, а сигнальный к плюсу, то увидишь как график скакнет на полтора вольта. Кстати, старые осциллографы зачастую начинают подвирать, поэтому по эталонному источнику напряжения полезно посмотреть насколько точно он отображает напряжение.

Выбор осциллографа.
Если ты только начал, то тебе подойдет любой . Крайне желательно если он будет двухканальным . То есть у него будет два щупа и две крутилки Усиления, для первого и второго канала, что позволяет одновременно получить два графика.
Вторым по важности критерием осциллографа является частота. Максимальная частота сигнала которую он может уловить. Мне пока хватало 1МГц на большее не замахивался. Те осциллографы, что продаются в магазинах уже имеют частоту от 10МГц и выше. Самый дешевый осциллограф который я видел стоил 5 тысяч рублей — ОСУ-10. Двухканальный стоит уже 10 тысяч, ну а я нацелился взял себе цифровой RIGOL DS1042CD за килобакс. Разные запросы — разные игрушки. Но, повторюсь, для начала хватит и 1МГц, и хватит надолго. Так что найди себе хоть какой нибудь осциллограф. А там поймешь что тебе надо.

Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!

А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.

84 thoughts on “Использование осциллографа”

Вот думаю компьютерный осцил в буке заюзать,не подскжете програмку поудобнее и несложную приставку на вход?

SamsPcbGuide, часть 8: Как получить правильную осциллограмму

Наверно, все умеют пользоваться осциллографом. Это очень легко – цепляешь «крокодил» к земле, остриё щупа – в необходимую точку измерения, регулируешь масштаб по вертикальной и горизонтальной осям и получаешь временную развёртку напряжения в этой точке. Да, так можно делать, но только если учитывать ряд факторов, о которых пойдёт речь в этой статье. А если не учитывать, то есть вероятность, что полученное на экране осциллографа изображение – бесполезная картинка. И чем меньше его стоимость, тем это более вероятно.

Сразу скажу, что в статье не рассматривается интерфейс управления и возможности типового электронного осциллографа – это относительно несложно и можно найти, например, здесь. Я пишу только о том, что не так просто найти, но легко потерять, особенно на русском языке. При прочтении потребуется знание основных положений теории сигнальных линий, почитать, например, можно в одной из моих предыдущих публикаций.

Я думаю, распространённый сценарий использования осциллографа в цикле разработки печатной платы следующий: если плата не заработала (КЗ, микросхема перегревается, микроконтроллер не прошивается, команды управления не проходят и т.п.), начинаем искать проблему, взяв щуп осциллографа в руки, а если заработала – то и хорошо (рис. 1).

При этом, если разработчик изделия это не радиолюбитель, который все указанные функции выполняет сам, то количество итераций даже до условного «успеха», который заключается в функционировании изделия может возрасти. Поэтому в случае разделения функций, как в случае разработки в рамках организации, разработчику желательно если не самому собирать и отлаживать первые образцы изделий, то, по крайней мере, присутствовать на производстве с целью анализа технологичности разработки.

По моему опыту работы, для первых образцов изделий гораздо более эффективной является поблочная сборка, начиная с подсистемы питания, с контролем электрических параметров подсистем (рис. 2).

При таком подходе сужается область поиска неисправности, так как она может возникать только во вновь собранном блоке или при взаимодействии этого блока с уже проверенными. Контроль электрических параметров гарантирует то, что изделие не просто корректно функционирует, а что все или основные электрические сигналы соответствуют ожидаемому поведению. В таком случае «успех» уже более основательный, и можно переходить к полному циклу испытаний при требуемых внешних воздействиях.

Вернёмся к использованию осциллографов. При описании их места в разработке печатных плат был неявно сформулирован важный принцип измерений (и измерений с помощью осциллографа в частности), о котором часто в своих лекциях говорит Эрик Богатин.

До момента измерения необходимо иметь представление о его ожидаемом результате. В случае совпадения ожиданий и реальности можно говорить о правильной модели процесса, в случае значительного несовпадения – либо о необходимости перепроверки ожидаемых параметров (получаемых с помощью прямых аналитических расчётов, результатов моделирования или на основании опыта), либо о некорректном измерении, либо о некорректном функционировании изделия.

В контексте темы публикации стоит обратить внимание на вариант некорректного измерения. При измерениях с помощью осциллографа как нигде ещё применим «эффект наблюдателя» из квантовой физики, когда наличие наблюдателя влияет на наблюдаемый процесс. На экране осциллографе можно такое пронаблюдать, что к реальности не будет иметь никакого отношения. Разбираемся, как это не допустить.

Читайте также  Avr на c - просто?

Начнём с формулировки идеального конечного результата: пронаблюдать на экране осциллографа временную развёртку напряжения в определённой точке сигнальной линии в заданный момент времени без внесения искажений. Пускай имеется идеальный быстродействующий осциллограф с бесконечной полосой пропускания, обеспечивающий аналого-цифровое преобразование с требуемым уровнем разрешения. Тогда для решения задачи потребуется передача сигнала от точки на печатной плате до коаксиального входа осциллографа, удовлетворяющая следующим условиям:

  1. Обеспечивается стабильный механический контакт с нулевым контактным сопротивлением в точках контакта. Их две, обе равнозначные: одна обеспечивает путь для прямого тока, другая – для возвратного.
  2. Сформированная сигнальная линия не должна нагружать измеряемую сигнальную цепь, то есть должна иметь бесконечный импеданс.
  3. Сформированная сигнальная линия не должна вносить искажений в измеряемый сигнал, то есть должна иметь плоскую передаточную функцию в бесконечной полосе частот и линейную фазовую характеристику.
  4. Сформированная сигнальная линия не должна вносить собственных помех в измеряемый сигнал, а также должна быть идеально защищена от внешних помех.

Конечно, в общем случаев эти условия не реализуемы, однако формулировка идеального конечного результата полезна при анализе задачи. Она, в частности, даёт понимание того, что реальная измерительная система имеет ограничения, сужающие область достоверных измерений.

На рис. 3 изображена эквивалентная схема измерительной цепи с использованием наиболее распространённого типа щупа «1X/10X», который в большинстве случаев входит с стандартный комплект осциллографа.

1. Это линия с потерями, т.е. кабель спроектирован таким образом, чтобы ослабить высокочастотные отражения, возникающие в связи с несогласованностью измерительной сигнальной линии.

15 пФ, а подстройка осуществляется конденсатором CEQ2. Индуктивность LP – это индуктивность петли возвратного тока.

С учётом сказанного выше можно получить рабочую модель измерительной цепи осциллографа для положений переключателя «10X» и «1X». Численные значения параметров должны браться из документации на соответствующие щупы и осциллографы. При этом, скорее всего, параметры различных производителей не должны значительно отличаться для заданной полосы пропускания. В представленных на рис. 6 и 7 моделях LTSpice использовались данные на осциллограф TDS2024B и щуп P2200.

Важно понимать, что эти модели являются упрощёнными и не учитывают всех паразитных параметров, поэтому точных значений полосы пропускания они не дают. Однако они дают качественное представление о влиянии тех или иных параметров при измерении. Например, первые результаты, на которые стоит обратить внимание это то, что:

1. Полоса пропускания щупа в режиме «1X» более чем на порядок меньше, чем в режиме «10X» и составляет порядка 6…8 МГц. Это соответствует минимальной измеримой длительности фронта сигнала tR = 0,35 / BWPROBE

45…55 нс. Преимуществом режима «1X» является увеличенное на 20 дБ отношение сигнал/шум, так как при том же уровне помех измерительной системы сигнал на входе осциллографа больше в 10 раз.

2. Увеличение индуктивности петли возвратного тока снижает полосу пропускания. Именно поэтому при измерении высокочастотных сигналов для обеспечения возвратного тока рекомендуется использовать не «крокодил» с индуктивностью

200 нГн, а специальную насадку на щуп, на порядок снижающую значение индуктивности (рис. 8).

3. Влияние подстроечного конденсатора в режиме «10X» на передаточную функцию нарастает, начиная с частот 200…300 Гц, до максимума на частотах в 2…3 кГц. Именно поэтому в качестве калибровочного сигнала на осциллографах обычно используется сигнал с тактовой частотой 1 кГц, фронты которого искажаются при подстройке (рис. 9). Полезная привычка – выполнять подстройку как при смене щупа или канала осциллографа, так и периодически перед проведением измерений.

Помимо электрических характеристик щупа и входной цепи осциллографа в модель на рис. 3 как параметры входят следующие величины: напряжение источника сигнала – его спектр, выходное сопротивление источника RS, импеданс сигнальной линии Z, импеданс нагрузки ZLOAD – именно импеданс, с учётом емкостной составляющей. Эти и другие параметры представлены в таблице 1, именно они определяют достоверность результатов измерения. Основной критерий заключается в том, чтобы исследуемая часть спектральной полосы сигнала входила в полосу пропускания системы «щуп + осциллограф», при этом амплитуда сигнала не превышала допустимых значений (это особенно важно в случае, когда входное сопротивление осциллографа составляет 50 Ом). Остальное: захват сигнала и измерение его параметров – дело техники.

Последний момент, на котором хочется остановиться – это полоса пропускания системы «щуп + осциллограф». Тут стоит избегать заблуждения, заключающегося в том, что если взять осциллограф и щуп с полосой пропускания 150 МГц, то полоса пропускания измерительной системы будет 150 МГц (это так только при наличии программной компенсации). Кроме того, тот факт, что на щупе «написано» 150 МГц, не всегда означает, что это реальные 150 МГц. Поэтому рекомендую с помощью генератора синусоидального сигнала экспериментально исследовать полосу пропускания. Частота, на которой амплитуда сигнала уменьшиться до 0,707 от значения на низких частотах, это и будет нужное значение. При этом стоит обратить внимание на то, есть ли локальные максимумы в передаточной функции. Я это проделал с помощью генератора Г4-107 для нескольких измерительных систем, при этом использовалось соединение с помощью «пружинки» (рис. 10). Перед каждым измерением выполнялась компенсация, при этом всегда приходилось делать подстройку, хоть и небольшую. Также проводились измерения без щупа с помощью короткого 50-омного коаксиального BNC-кабеля. Результаты представлены в таблице 2. Удивил щуп PP510 с заявленной полосой в 100 МГц.

В общем, если подводить итог, то хочется сказать, что следует внимательно относиться к измерениям с помощью осциллографа, и в качестве опоры использовать корреляцию между ожидаемыми и полученными результатами. Что касается области более высоких частот, то для измерения сигналов, полоса пропускания которых превышает 500 МГц, пассивные щупы типа «1X/10X» не применимы. Для этого используют прямое коаксиальное соединение при 50-омном входе осциллографа или активные щупы, ещё больше минимизируют индуктивность соединения (в т. ч. за счёт использование паяных соединений, размещения на плате миниатюрных коаксиальных разъёмов и т.п.). Тема очень широкая – есть изолированные осциллографы, изолированные щупы, дифференциальные и специализированные щупы, но всё это уже отдельный разговор, выходящий за рамки данной статьи.

Активный щуп для осциллографа

А. Гришин
(Р 12/88)

Входная емкость современных осциллографов составляет порядка 30. 50 пФ. При измерениях к ней добавляется емкость соединительного кабеля, и суммарная входная емкость достигает 100. 150 пФ. Это может привести к существенному искажению результатов измерений и неправильной настройке, например, фильтров-пробок выходных каскадов усилителей записи магнитофонов. Вот почему при проведении исследований в цепях, критичных к вносимой емкости измерительного прибора, необходимо применять специальные согласующие устройства, имеющие большое входное сопротивление и небольшую емкость.

Для большинства практических работ необходимы два основных вида устройств: для гармонических сигналов малой амплитуды (1. 50 мВ) с коэффициентом передачи К>1 и для сигналов большой амплитуды (до 10. 20 В), позволяющие передавать постоянную составляющую сигнала и имеющие коэффициент передачи К=0,2. 0,5.

Широкое распространение в последние годы быстродействующих аналоговых и цифровых микросхем, работающих при сравнительно больших напряжениях (ОУ широкого применения, микросхемы серии К561-до 15 В), выявило необходимость устройства, работающего в широком диапазоне напряжений с возможностью передачи постоянной составляющей сигнала.


Puc.1

Схема такого устройства в виде щупа приведена на рис. 1. Он выполнен по классической схеме истокового повторителя с использованием транзистора МОП-структуры и содержит минимальное количество деталей. Диапазон рабочих частот составляет О. 5 МГц. Питание осуществляется от любого источника тока напряжением 7. 15 В, например, аккумуляторной батареи 7Д-0,115-У1.1 или гальванических батарей «Крона», «Корунд». Входная емкость щупа — не более 4 пФ, входное сопротивление — не менее 3 МОм. Выходное напряжение при Uвх=0 co-ставляет 2,5 В. Диапазон входных напряжений в области отрицательных значений (до отсечки) — 7 В, в области положительных значений (до начала ограничения) составляет 13 В при Uпит=9В и 26В при Uпит=15В.

Коэффициент передачи в указанном диапазоне частот составляет 0,4.

Резисторы R1 и R2 образуют входной делитель напряжения, конденсатор С1 служит для частотной компенсации.

Ввиду значительного разброса параметров конкретных экземпляров транзисторов характеристики конструкций щупов также могут отличаться в основном по напряжению отсечки и коэффициенту передачи. Для получения максимального рабочего диапазона в области отрицательных значений входных напряжений необходимо применять транзисторы с максимальным (по абсолютной величине) напряжением отсечки. Автором был применен транзистор с Uзи oтc=4,2 В. Большинство транзисторов КП305И имеют меньшее значение Uзи отс, поэтому при необходимости напряжение отсечки щупа может быть увеличено путем уменьшения коэффициента передачи входного делителя, например, увеличив сопротивление резистора R1. Впрочем, для многих измерений, где требуется настройка по максимуму или минимуму напряжения, значение напряжения отсечки щупа не является существенным, поскольку настройку можно проводить по положительной полуволне сигнала.

Щуп собран в корпусе от фломастера. Монтаж объемный, без применения дополнительных конструктивных элементов. Выводы радиоэлементов соединены непосредственно между собой. Щуп подключают к осциллографу экранированным кабелем длиной не более 30 см.

В конструкции применены резисторы типа МЛТ-0,125. Конденсатор С1 конструктивный, его выполняют проводом ПЭВ диаметром 0,15. 0,35 мм. Провод нужно подпаять к левому (по схеме) выводу резистора R1 и намотать 12 витков на правый вывод. Подбор емкости производят изменением числа витков. По окончании настройки на полученном таким образом конденсаторе мелкозернистой шкуркой зачистить дорожку, залудить ее и пропаять тонким слоем (для устранения паразитной индуктивности).

Монтируя щуп, следует принимать меры по предупреждению пробоя полевого транзистора статическим электричеством и наводками от сети.

Настройка устройства заключается в калибровке для получения требуемого коэффициента передачи и подборе емкости конденсатора С1. Проведение калибровки потребует применения регулируемого источника постоянного тока и вольтметра. Подбором сопротивления резистора R1 устанавливают коэффициент передачи К=0,4 (или 0,5), при этом учитывают начальное напряжение смещения на выходе.

При подборе емкости конденсатора С1 необходим генератор прямоугольных импульсов с амплитудой сигнала на выходе 2. 10 В и частотой следования 1. 10 кГц. Для обеспечения крутых фронтов можно использовать триггерный делитель частоты, например, на микросхемах серий К155, К176, К561. Изменением емкости конденсатора С1 частотной компенсации добиваются получения на экране осциллографа прямоугольных импульсов без завала фронтов, амплитуда выбросов на фронтах должна быть не более 10 % от амплитуды импульсов. Слишком большая емкость вызывает значительные выбросы по фронтам, недостаточная — их затягивание.

На корпус изготовленной конструкции необходимо нанести надписи параметров устройства — входной емкости, сопротивления и коэффициента передачи.

При проведении измерений с отсчетом постоянной составляющей осциллограф необходимо скорректировать по уровню отсчета. Для этого следует замкнуть вход щупа и луч осциллографа установить на нулевую отметку.