Как рассчитать потери холостого хода трансформатора?

Понятие потерь холостого хода трансформатора и как их определить, формулы и таблицы

В результате энергопотерь происходит перерасход средств и материалов. Из-за этого электричество дорожает. Чтобы справиться с этой проблемой, стараются вовремя выявлять неполадки и предотвращать свои в работе. Негативно на работу устройства влияют потери на холостом ходу трансформатора. Для устранения данной проблемы постоянно разрабатываются новые методики.

  1. Понятие холостого хода трансформатора
  2. Какие факторы влияют на потери
  3. Изоляция
  4. Вихревые токи
  5. Гистерезис
  6. Характеристики электротехнической стали
  7. Перегрев
  8. В первичной обмотке
  9. Как определить потери
  10. Таблица потерь силовых трансформаторов по справочным данным в зависимости от номинала
  11. Проверка устройства в режиме ХХ
  12. Особенности режима ХХ в трехфазном трансформаторе
  13. Примеры определения потерь ХХ на реальных моделях
  14. Вывод

Понятие холостого хода трансформатора

Когда у трансформатора наблюдается выделенное питание одной обмотки, а другие пребывают в разомкнутом состоянии. Этот процесс приводит к утечке энергии, что и называют потерями холостого хода. Его развитие происходит под влиянием ряда внешних и внутренних факторов.

Мощность трансформатора не используется в полной мере, а часть энергии утрачается по причине некоторых магнитных процессов, особенностями первичной обмотки и изоляционного слоя. Последний вариант влияет при использовании приборов, функционирующих на повышенной частоте.

Какие факторы влияют на потери

Современные трансформаторы в условиях полной нагрузки достигают 99% КПД. Но устройства продолжают совершенствовать, пытаясь снизить утрату энергии, которая практически равны сумме потерь холостого хода, возникающих под влиянием разнообразных факторов.

Изоляция

Если на стягивающих шпильках установлена плохая изоляция или ее недостаточно, возникает замкнутый накоротко контур. Это один из главных факторов данной проблемы трансформатора. Поэтому процессу изоляции следует уделять больше внимания, используя для этих целей качественные специализированные материалы.

Вихревые токи

Развитие вихревых токов связано с течением магнитного потока по магнитопроводу. Их особенность в перпендикулярном направлении по отношению к потоку. Чтобы их уменьшить, магнитопровод делают из отдельных элементов, предварительно изолированных. От толщины листа и зависит вероятность появления вихревых токов, чем она меньше, тем ниже риск их развития, приводящего к меньшим потерям мощности.

Чтобы уменьшить вихревые токи и увеличить электрическое сопротивление стали, в материал добавляют различные виды присадок.

Они улучшают свойства материала и позволяют снизить риск развития неблагоприятных процессов, плохо отражающихся на работе устройства.

Гистерезис

Как и переменный ток, магнитный поток также меняет свое направление. Это говорит о поочередном намагничивании и перемагничивании стали. Когда ток меняется от максимума до нуля, происходит размагничивание стали и уменьшение магнитной индукции, но с определенным опозданием.

При перемене направления тока кривая намагничивания формирует петлю гистерезиса. Она отличается в разных сортах стали и зависит от того, какие максимальные показатели магнитной индукции материал может выдержать. Петля охватывает мощность, которая постепенно перерасходуется на процесс намагничивания. При этом происходит нагревание стали, энергия, проводимая по трансформатору, превращается в тепловую и рассеивается в окружающую среду, то есть, она тратится зря, не принося никакой пользы всем пользователям.

Характеристики электротехнической стали

Для трансформаторов используют преимущественно холоднокатаную сталь. Но показатель потерь в ней зависит от того, насколько качественно собрали устройство, соблюдались ли все правила в ходе производственного процесса.

Для уменьшения потерь можно также немного добавить сечения проводам на обмотке. Но это не выгодно с финансовой точки зрения, ведь придется использовать больше магнитопровода и других важных материалов. Поэтому размер обмоточных проводов меняют редко. Пытаются найти другой, более экономичный способ решения этой проблемы.

Перегрев

В процессе работы трансформатора его элементы могут нагреваться. В этих условиях устройство не способно нормально выполнять свои функции. Все зависит от скорости этого процесса. Чем выше нагрев, тем быстрее прибор перестанет выполнять свои прямые функции и понадобится капитальный ремонт и замена определенных деталей.

В первичной обмотке

Если электрический ток по проводнику замыкается, то высокая вероятность утечки электрической энергии. Размер потерь зависит от величины тока в проводнике и его сопротивления, а также от показателя нагрузок, возлагаемых на прибор.

Как определить потери

Этот процесс можно измерить, воспользовавшись мощной установкой. Формула включает такие действия: необходимо умножить показатели их мощности друг на друга. При использовании этого способа необходимо учитывать наличие определенных погрешностей. Искажение связано с тем, что коэффициент мощности учесть точно нельзя. Этот показатель называют конус игла. Он достаточно важен для работы устройства.

Таблица потерь силовых трансформаторов по справочным данным в зависимости от номинала

Чаще всего проблема утечки электроэнергии связана с движением вихревых токов и перемагничиванием. Под влиянием этих факторов нагревается магнитопровод, который обуславливает основную часть потерь холостого хода независимо от тока нагрузки. Развитие этого процесса происходит независимо от того, в каком режиме функционирует устройство.

Постепенно, под влиянием определенных факторов могут меняться эти показатели в сторону значительного увеличения.

Таблица потерь ХХ

Мощность кВа Напряжение ВН/НН, кВ Потери холостого хода Вт
250 10/0,4 730
315 10/0,4 360
400 10/0,4 1000
500 10/0,4 1150
630 10/0,4 1400
800 10/0,4 1800
1000 10/0,4 1950

Проверка устройства в режиме ХХ

Для этого выполняют такие действия:

  1. С использованием вольтметра проверяют напряжение, подающееся на катушку.
  2. Другим вольтметром исследуют напряжение на остальных выводах. Важно использовать устройство с достаточным сопротивлением, чтобы показатели были требуемого значения.
  3. Выполняют присоединение амперметра к цепи первичной обмотки. С его помощью можно добиться определения силы тока холостого хода. Также прибегают к применению ваттметра, с помощью которого стараются выполнить измерение уровня мощности.

После получения показаний всех приборов выполняют расчеты, которые помогут в вычислении. Чтобы получить нужные данные, необходимо показатели первой обмотки разделить на вторую. С применением данных опыта ХХ с результатами короткозамкнутого режима определяют, насколько полно устройство выполняет свои действия.

Особенности режима ХХ в трехфазном трансформаторе

На функционирование трехфазного трансформатора в таком режиме влияют отличия в подключении обмоток: первичная катушка в виде треугольника и вторичная в форме звезды. Ток способствует созданию собственного потока.

Трехфазный ток в виде группы однофазных имеет такие особенности: замыкание ТГС магнитного потока происходит в каждой фазе за счет сердечника. Если напряжение будет постепенно увеличиваться, то в изоляции возникнет пробой и электроустановка рано или поздно выйдет из строя.

Если в трансформаторе используется бронестержневая магнитная система, то в нем можно наблюдать развитие похожих процессов.

Примеры определения потерь ХХ на реальных моделях

Чтобы определить показатель потерь в течение года на трансформаторе типа ТНД мощностью в 16МВА, необходимо воспользоваться эмпирической формулой:

  • n – сколько электротехнических устройств используется;
  • β – коэффициент загрузки трансформатора, представляющий собой отношение расчетной мощности к номинальной (β = Sp/Sн).

Вывод

Энергопотери в условиях холостого хода трансформатора связаны с магнитными потерями, потерями в первичной обмотке и изоляционном слое. Для снижения этого показателя до сих пор ведутся работы, несмотря на то, что КПД современных трансформаторов в условиях повышенной нагрузки составляет 99%.

Для снижения показателя утечки энергии необходимо снизить влияние провоцирующих факторов. Чтобы добиться этого, постоянно усовершенствуют технологию создания устройств, используют только прочные материалы, проверяя их экспериментальным путем.

Определение потерь в трансформаторе

Трансформатор является прибором, который призван преобразовывать электроэнергию сети. Эта установка имеет две или больше обмоток. В процессе своей работы трансформаторы могут преобразовать частоту и напряжение тока, а также количество фаз сети.

В ходе выполнения заданных функций наблюдаются потери мощности в трансформаторе. Они влияют на исходную величину электричества, которую выдает на выходе прибор. Что собой представляют потери и КПД трансформатора, будет рассмотрено далее.

  • 1 Устройство
  • 2 Понятие потерь
    • 2.1 Магнитные потери
    • 2.2 Электрические потери
  • 3 Методика расчета
  • 4 Формула расчета
    • 4.1 Расчет для трехобмоточных трансформаторов
  • 5 Пример расчета
  • 6 Измерение полезного действия

Устройство

Трансформатор представляет собой статический прибор. Он работает от электричества. В конструкции при этом отсутствуют подвижные детали. Поэтому рост затрат электроэнергии вследствие механических причин исключены.

При функционировании силовой аппаратуры затраты электроэнергии увеличиваются в нерабочее время. Это связано с ростом активных потерь холостого хода в стали. При этом наблюдается снижение нагрузки номинальной при увеличении энергии реактивного типа. Потери энергии, которые определяются в трансформаторе, относятся к активной мощности. Они появляются в магнитоприводе, на обмотках и прочих составляющих агрегата.

Понятие потерь

При работе установки часть мощности поступает на первичный контур. Она рассеивается в системе. Поэтому поступающая мощность в нагрузку определяется на меньшем уровне. Разница составляет суммарное снижение мощности в трансформаторе.

Существует два вида причин, из-за которых происходит рост потребление энергии оборудованием. На них влияют различные факторы. Их делят на такие виды:

  1. Магнитные.
  2. Электрические.

Их следует понимать, дабы иметь возможность снизить электрические потери в силовом трансформаторе.

Магнитные потери

В первом случае потери в стали магнитопривода состоят из вихревых токов и гистериза. Они прямо пропорциональны массе сердечника и его магнитной индукции. Само железо, из которого выполнен магнитопривод, влияет на эту характеристику. Поэтому сердечник изготавливают из электротехнической стали. Пластины делают тонкими. Между ними пролегает слой изоляции.

Также на снижение мощности трансформаторного устройства влияет частота тока. С ее повышением растут и магнитные потери. На этот показатель не влияет изменение нагрузки устройства.

Электрические потери

Снижение мощности может определяться в обмотках при их нагреве током. В сетях на такие затраты приходится 4-7% от общего количества потребляемой энергии. Они зависят от нескольких факторов. К ним относятся:

  • Электрическая нагрузка системы.
  • Конфигурация внутренних сетей, их длина и размер сечения.
  • Режим работы.
  • Средневзвешенный коэффициент мощности системы.
  • Расположение компенсационных устройств.

Потери мощности в трансформаторах являются величиной переменной. На нее влияет показатель квадрата тока в контурах.

Методика расчета

Потери в трансформаторах можно рассчитать по определенной методике. Для этого потребуется получить ряд исходных характеристик работы трансформатора. Представленная далее методика применяется для двухобмоточных разновидностей. Для измерений потребуется получить следующие данные:

  • Номинальный показатель мощности системы (НМ).
  • Потери, определяемые при холостом ходе (ХХ) и номинальной нагрузке.
  • Потери короткого замыкания (ПКЗ).
  • Количество потребленной энергии за определенное количество времени (ПЭ).
  • Полное количество отработанных часов за месяц (квартал) (ОЧ).
  • Число отработанных часов при номинальном уровне нагрузки (НЧ).

Получив эти данные, измеряют коэффициент мощности (угол cos φ). Если же в системе отсутствует счетчик реактивной мощности, в расчет берется ее компенсация tg φ. Для этого происходит измерение тангенса угла диэлектрических потерь. Это значение переводят в коэффициент мощности.

Формула расчета

Коэффициент нагрузки в представленной методике будет определяться по следующей формуле:

К = Эа/НМ*ОЧ*cos φ, где Эа – количество активной электроэнергии.

Какие потери происходят в трансформаторе в период загрузки, можно просчитать по установленной методике. Для этого применяется формула:

П = ХХ * ОЧ * ПКЗ * К² * НЧ.

Расчет для трехобмоточных трансформаторов

Представленная выше методика применяется для оценки работы двухобмоточных трансформаторов. Для аппаратуры с тремя контурами необходимо учесть еще ряд данных. Они указываются производителем в паспорте.

Читайте также  Каким прибором измеряется сопротивление изоляции?

В расчет включают номинальную мощность каждого контура, а также их потери короткого замыкания. При этом расчет будет производиться по следующей формуле:

Э = ЭСН + ЭНН, где Э – фактическое количество электричества, которое прошло через все контуры; ЭСН – электроэнергия контура среднего напряжения; ЭНН – электроэнергия низкого напряжения.

Пример расчета

Чтобы было проще понять представленную методику, следует рассмотреть расчет на конкретном примере. Например, необходимо определить увеличение потребления энергии в силовом трансформаторе 630 кВА. Исходные данные проще представить в виде таблицы.

Обозначение Расшифровка Значение
НН Номинальное напряжение, кВ 6
Эа Активная электроэнергия, потребляемая за месяц, кВи*ч 37106
НМ Номинальная мощность, кВА 630
ПКЗ Потери короткого замыкания трансформатора, кВт 7,6
ХХ Потери холостого хода, кВт 1,31
ОЧ Число отработанных часов под нагрузкой, ч 720
cos φ Коэффициент мощности 0,9

На основе полученных данных можно произвести расчет. Результат измерения будет следующий:

% потерь составляет 0,001. Их общее число равняется 0,492%.

Измерение полезного действия

При расчете потерь определяется также показатель полезного действия. Он показывает соотношение мощности активного типа на входе и выходе. Этот показатель рассчитывают для замкнутой системы по следующей формуле:

КПД = М1/М2, где М1 и М2 – активная мощность трансформатора, определяемая измерением на входном и исходящем контуре.

Выходной показатель рассчитывается путем умножения номинальной мощности установки на коэффициент мощности (косинус угла j в квадрате). Его учитывают в приведенной выше формуле.

В трансформаторах 630 кВА, 1000 кВА и прочих мощных устройствах показатель КПД может составлять 0,98 или даже 0,99. Он показывает, насколько эффективно работает агрегат. Чем выше КПД, тем экономичнее расходуется электроэнергия. В этом случае затраты электроэнергии при работе оборудования будут минимальными.

Рассмотрев методику расчета потерь мощности трансформатора, короткого замыкания и холостого хода, можно определить экономичность работы аппаратуры, а также ее КПД. Методика расчета предполагает применять особый калькулятор или производить расчет в специальной компьютерной программе.

К составляющим потерь реактивной мощности трансформатора относится. Определение потерь в трансформаторе

Трансформатор является прибором, который призван преобразовывать электроэнергию сети. Эта установка имеет две или больше обмоток. В процессе своей работы трансформаторы могут преобразовать частоту и напряжение тока, а также количество фаз сети.

В ходе выполнения заданных функций наблюдаются потери мощности в трансформаторе. Они влияют на исходную величину электричества, которую выдает на выходе прибор. Что собой представляют потери и КПД трансформатора, будет рассмотрено далее.

Устройство

Трансформатор представляет собой статический прибор. Он работает от электричества. В конструкции при этом отсутствуют подвижные детали. Поэтому рост затрат электроэнергии вследствие механических причин исключены.

При функционировании силовой аппаратуры затраты электроэнергии увеличиваются в нерабочее время. Это связано с ростом активных потерь холостого хода в стали. При этом наблюдается снижение нагрузки номинальной при увеличении энергии реактивного типа. Потери энергии, которые определяются в трансформаторе, относятся к активной мощности. Они появляются в магнитоприводе, на обмотках и прочих составляющих агрегата.

Принцип работы токовых клещей

Токовые клещи представляют собой обычный токовый трансформатор, только разборный. Проводник, силу тока в котором мы измеряем, пропускается внутри сердечника. Далее клещи схлопываются, сердечник замыкается. В ручке токовых клещей размещена вторичная обмотка, намотанная на этом разборном сердечнике.

Такие токовые клещи позволяют измерять силу переменного тока. Для измерения постоянного тока применяется несколько другой принцип. Описание токовых клещей постоянного тока.

Понятие потерь

При работе установки часть мощности поступает на первичный контур. Она рассеивается в системе. Поэтому поступающая мощность в нагрузку определяется на меньшем уровне. Разница составляет суммарное снижение мощности в трансформаторе.

Существует два вида причин, из-за которых происходит рост потребление энергии оборудованием. На них влияют различные факторы. Их делят на такие виды:

  1. Магнитные.
  2. Электрические.

Их следует понимать, дабы иметь возможность снизить электрические потери в силовом трансформаторе.

Магнитные потери

В первом случае потери в стали магнитопривода состоят из вихревых токов и гистериза. Они прямо пропорциональны массе сердечника и его магнитной индукции. Само железо, из которого выполнен магнитопривод, влияет на эту характеристику. Поэтому сердечник изготавливают из электротехнической стали. Пластины делают тонкими. Между ними пролегает слой изоляции.

Также на снижение мощности трансформаторного устройства влияет частота тока. С ее повышением растут и магнитные потери. На этот показатель не влияет изменение нагрузки устройства.

Электрические потери

Снижение мощности может определяться в обмотках при их нагреве током. В сетях на такие затраты приходится 4-7% от общего количества потребляемой энергии. Они зависят от нескольких факторов. К ним относятся:

  • Электрическая нагрузка системы.
  • Конфигурация внутренних сетей, их длина и размер сечения.
  • Режим работы.
  • Средневзвешенный коэффициент мощности системы.
  • Расположение компенсационных устройств.

Потери мощности в трансформаторах являются величиной переменной. На нее влияет показатель квадрата тока в контурах.

Потери мощности в трансформаторе и КПД трансформатора

Потери мощности в трансформаторе

В трансформаторе возникает два вида потерь мощности: 1. Электрические потери Рэл — возникают в обмотках трансформатора и обусловлены их нагреванием при протекании по ним электрического тока. Электрические потери зависят от величины сопротивления обмоток и силы тока: ; 2. Магнитные потери Рм — возникают в магнитопроводе из-за переменного магнитного поля. Магнитные потери состоят из двух видов потерь: потери от вихревых токов РВ; потери из-за гистерезиса РГ, которые вызваны периодическим перемагничиванием сердечника переменным магнитным полем.

Магнитные потери зависят от конструкции магнитопровода, его массы, материла, частоты тока (

f1,3), величины магнитной индукции(

Потери мощности в трансформаторе определяются из опыта холостого хода (Рм) и короткого замыкания (Рз).

При проведении опыта холостого хода (рис.4.7) на вторичной обмотке трансформатора отсутствует нагрузка. На первичную обмотку трансформатора подается номинальное напряжение U1ном, при этом ток во вторичной обмотке трансформатора отсутствует, а в первичной обмотке протекает ток холостого хода, составляющий 5 — 10 % от номинального тока (I1ХХ = (5 — 10)% I1ном).

Из опыта холостого хода определяется:

1) коэффициент трансформации 2) мощность магнитных потерь Рм (электрическими потерями можно пренебречь)

При проведении опыта короткого замыкания вторичная обмотка трансформатора замкнута накоротко (рис.4.8). На первичную обмотку трансформатора подается пониженное напряжение U1КЗ = (5 — 10)% U1ном так, чтобы в обмотках протекали номинальные токи. При этом ваттметр показывает мощность электрических потерь Рэл, т.к. магнитными потерями можно пренебречь.

Кпд трансформатора

КПД трансформатора определяется как отношение активной мощности на выходе трансформатора к активной мощности на выходе первичной обмотки.

КПД трансформатора зависит: 1) от конструкции трансформатора; 2) от степени загрузки трансформатора (рис 4.9, Максимальный КПД будет у трансформатора с коэффициентом загрузки β = 0,45..0,65 ( )); 3) от характера нагрузки (наибольший КПД трансформатор имеет при активной нагрузке).

4.4. Типы трансформаторов

Автотрансформатор

Автотрансформатор — это трансформатор, имеющий на сердечнике только одну обмотку, к разным точкам которой подсоединены первичная и вторичная цепи (рис.4.10).

Достоинства: 1. Меньший расход материала для обмоток и сердечника. 2. Меньшие габариты, более дешёвый. 3. Меньшие потери мощности, более высокий КПД. 4. Возможность плавного регулирования напряжения.

Недостатки: 1, Электрическая связь между обмотками (отсутствие гальванической развязки), что может привести к попаданию высокого напряжения в цепь низкого напряжения. 2. Невысокий коэффициент трансформации (К = 1,5 — 2). 3. Большие токи короткого замыкания.

Методика расчета

Потери в трансформаторах можно рассчитать по определенной методике. Для этого потребуется получить ряд исходных характеристик работы трансформатора. Представленная далее методика применяется для двухобмоточных разновидностей. Для измерений потребуется получить следующие данные:

  • Номинальный показатель мощности системы (НМ).
  • Потери, определяемые при холостом ходе (ХХ) и номинальной нагрузке.
  • Потери короткого замыкания (ПКЗ).
  • Количество потребленной энергии за определенное количество времени (ПЭ).
  • Полное количество отработанных часов за месяц (квартал) (ОЧ).
  • Число отработанных часов при номинальном уровне нагрузки (НЧ).

Получив эти данные, измеряют коэффициент мощности (угол cos φ). Если же в системе отсутствует счетчик реактивной мощности, в расчет берется ее компенсация tg φ. Для этого происходит измерение тангенса угла диэлектрических потерь. Это значение переводят в коэффициент мощности.

Формула расчета

Коэффициент нагрузки в представленной методике будет определяться по следующей формуле:

К = Эа/НМ*ОЧ*cos φ, где Эа – количество активной электроэнергии.

Какие потери происходят в трансформаторе в период загрузки, можно просчитать по установленной методике. Для этого применяется формула:

П = ХХ * ОЧ * ПКЗ * К² * НЧ.

Расчет для трехобмоточных трансформаторов

Представленная выше методика применяется для оценки работы двухобмоточных трансформаторов. Для аппаратуры с тремя контурами необходимо учесть еще ряд данных. Они указываются производителем в паспорте.

В расчет включают номинальную мощность каждого контура, а также их потери короткого замыкания. При этом расчет будет производиться по следующей формуле:

Э = ЭСН + ЭНН, где Э – фактическое количество электричества, которое прошло через все контуры; ЭСН – электроэнергия контура среднего напряжения; ЭНН – электроэнергия низкого напряжения.

Пример расчета

Чтобы было проще понять представленную методику, следует рассмотреть расчет на конкретном примере. Например, необходимо определить увеличение потребления энергии в силовом трансформаторе 630 кВА. Исходные данные проще представить в виде таблицы.

Обозначение Расшифровка Значение
НН Номинальное напряжение, кВ 6
Эа Активная электроэнергия, потребляемая за месяц, кВи*ч 37106
НМ Номинальная мощность, кВА 630
ПКЗ Потери короткого замыкания трансформатора, кВт 7,6
ХХ Потери холостого хода, кВт 1,31
ОЧ Число отработанных часов под нагрузкой, ч 720
cos φ Коэффициент мощности 0,9

На основе полученных данных можно произвести расчет. Результат измерения будет следующий:

% потерь составляет 0,001. Их общее число равняется 0,492%.

Расчет трансформатора: онлайн калькулятор или дедовский метод для дома — выбери сам

Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.

Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.

  • Как пользоваться онлайн калькулятором для расчета трансформатора пошагово Подготовка исходных данных за 6 простых шагов
  • Выполнение онлайн расчета трансформатора
  • Как рассчитать силовой трансформатор по формулам за 5 этапов
      Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода
    • Особенности вычисления коэффициента трансформации и токов внутри обмоток
    • Как вычислить диаметры медного провода для каждой обмотки
    • Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты
    • Учет свободного места внутри окна магнитопровода
  • 4 практических совета по наладке и сборке трансформатора: личный опыт

    Сразу заостряю ваше внимание на том вопросе, что приводимые методики не способны точно учесть магнитные свойства сердечника, который может быть выполнен из разных сортов электротехнических стали.

    Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения. На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток.

    Измерение полезного действия

    При расчете потерь определяется также показатель полезного действия. Он показывает соотношение мощности активного типа на входе и выходе. Этот показатель рассчитывают для замкнутой системы по следующей формуле:

    КПД = М1/М2, где М1 и М2 – активная мощность трансформатора, определяемая измерением на входном и исходящем контуре.

    Выходной показатель рассчитывается путем умножения номинальной мощности установки на коэффициент мощности (косинус угла j в квадрате). Его учитывают в приведенной выше формуле.

    В трансформаторах 630 кВА, 1000 кВА и прочих мощных устройствах показатель КПД может составлять 0,98 или даже 0,99. Он показывает, насколько эффективно работает агрегат. Чем выше КПД, тем экономичнее расходуется электроэнергия. В этом случае затраты электроэнергии при работе оборудования будут минимальными.

    Рассмотрев методику расчета потерь мощности трансформатора, короткого замыкания и холостого хода, можно определить экономичность работы аппаратуры, а также ее КПД. Методика расчета предполагает применять особый калькулятор или производить расчет в специальной компьютерной программе.

    Режим холостого хода трансформатора

    Одно из наиболее используемых электротехнических устройств – трансформатор. Данное оборудование используется для изменения величины электрического напряжения. Рассмотрим особенности режима холостого хода трансформатора, с учётом правил определения характеристик для различных видов устройств.

    Трансформатор состоит из первичной и вторичной обмоток, расположенных на сердечнике. При подаче напряжения на входную катушку, образуется магнитное поле, индуцирующее ток на выходной обмотке. Разница характеристик достигается, благодаря различному количеству витков в катушках входа и выхода.

    Принцип работы трансформатора

    1. Что такое режим холостого хода
    2. Как проводится опыт холостого хода
    3. Для однофазного трансформатора
    4. Для трёхфазного трансформатора
    5. Для сварочного трансформатора
    6. Видео: измерение тока холостого хода
    7. Меры по снижению тока холостого хода

    Что такое режим холостого хода

    Под режимом холостого хода понимают состояние устройства, при котором во время подачи переменного электротока на входную катушку выходная находится в разомкнутом состоянии. Данная ситуация характерна для агрегата, подключённого к электросети, при условии, что нагрузку к выходному контуру ещё не включили.

    Режим короткого замыкания

    В процессе эксперимента можно найти:

    • электроток холостого хода (замеряется амперметром) – обычно его значение невелико, не больше 0,1 от номинального показателя тока первой обмотки;
    • мощность, теряемую в магнитопроводе прибора(или другими словами потери в стали);
    • показатель трансформации напряжения – примерно равен значению в первичной цепи, деленному на таковое для вторичной (оба значения – данные вольтметров);
    • по результатам замеров силы тока, мощности и напряжения первичной электроцепи можно высчитать коэффициент мощности: мощность делят на произведение двух других величин.

    Как проводится опыт холостого хода

    При проведении опыта холостого хода появляется возможность определить следующие характеристики агрегата:

    • коэффициент трансформации;
    • мощность потерь в стали;
    • параметры намагничивающей ветви в замещающей схеме.

    Для опыта на устройство подаётся номинальная нагрузка.

    При проведении опыта холостого хода и расчёте характеристик на основе данной методики необходимо учитывать разновидность устройства.

    В данном состоянии трансформатор обладает нулевой полезной мощностью по причине отсутствия на выходной катушке электротока. Поданная нагрузка преобразуется в потери тепла на входной катушке I02×r1 и магнитные потери сердечника Pm. По причине незначительности значения потерь тепла на входе, их в большинстве случае в расчёт не принимают. Поэтому общее значение потерь при холостом ходе определяется магнитной составляющей.

    Далее приведены особенности расчёта характеристик для различных видов трансформаторов.

    Для однофазного трансформатора

    Опыт холостого хода для однофазного трансформатора проводится с подключением:

    • вольтметров на первичной и вторичной катушках;
    • ваттметра на первичной обмотке;
    • амперметра на входе.

    Приборы подключаются по следующей схеме:

    Для определения электротока холостого хода Iо используют показания амперметра. Его сравнивают со значением электротока по номинальным характеристикам с использованием следующей формулы, получая итог в процентах:

    Iо% = I0×100/I10.

    Чтобы определить коэффициент трансформации k, определяют величину номинального напряжения U1н по показаниям вольтметра V1, подключённого на входе. Затем по вольтметру V2 на выходе снимают значение номинального напряжения U2О.

    Коэффициент рассчитывается по формуле:

    K = w1/w2 = U1н/ U2О.

    Величина потерь составляет сумму из электрической и магнитной составляющих:

    P0 = I02×r1 + I02×r0.

    Но, если пренебречь электрическими потерями, первую часть суммы можно из формулы исключить. Однако незначительная величина электрических потерь характерна только для оборудования небольшой мощности. Поэтому при расчёте характеристик мощных агрегатов данную часть формулы следует учитывать.

    Потери холостого хода для трансформаторов мощностью 30-2500 кВА

    Для трёхфазного трансформатора

    Трёхфазные агрегаты испытываются по аналогичной схеме. Но напряжение подаётся отдельно по каждой фазе, с соответствующей установкой вольтметров. Их потребуется 6 единиц. Можно провести опыт с одним прибором, подключая его в необходимые точки поочерёдно.

    При номинальном напряжении электротока обмотки более 6 кВ, для испытания подаётся 380 В. Высоковольтный режим для проведения опыта не позволит добиться необходимой точности для определения показателей. Кроме точности, низковольтный режим позволяет обеспечить безопасность.

    Применяется следующая схема:

    Работа аппарата в режиме холостого хода определяется его магнитной системой. Если речь идёт о типе прибора, сходного с однофазным трансформатором или бронестержневой системе, замыкание третьей гармонической составляющей по каждой из фаз будет происходить отдельно, с набором величины до 20 процентов активного магнитного потока.

    В результате возникает дополнительная ЭДС с достаточно высоким показателем – до 60 процентов от главной. Создаётся опасность повреждения изолирующего слоя покрытия с вероятностью выхода из строя аппарата.

    Предпочтительнее использовать трехстержневую систему, когда одна из составляющих будет проходить не по сердечнику, с замыканием по воздуху или другой среде (к примеру, масляной), с низкой магнитной проницаемостью. В такой ситуации не произойдёт развитие большой дополнительной ЭДС, приводящей к серьёзным искажениям.

    Для сварочного трансформатора

    Для сварочных трансформаторов холостой ход – один из режимов их постоянного использования в работе. В процессе выполнения сварки при рабочем режиме происходит замыкание второй обмотки между электродом и металлом детали. В результате расплавляются кромки и образуется неразъёмное соединение.

    После окончания работы электроцепь разрывается, и агрегат переходит в режим холостого хода. Если вторичная цепь разомкнута, величина напряжения в ней соответствует значению ЭДС. Эта составляющая силового потока отделяется от главного и замыкается по воздушной среде.

    Чтобы избежать опасности для человека при нахождении аппарата на холостом ходу, значение напряжения не должно превышать 46 В. Учитывая, что у отдельных моделей значение данных характеристик превышает указанное, достигая 70 В, сварочный агрегат выполняют со встроенным ограничителем характеристик для режима холостого хода.

    Блокировка срабатывает за время, не превышающее 1 секунду с момента прерывания рабочего режима. Дополнительная защитная мера – устройство заземления корпуса сварочного агрегата.

    Видео: измерение тока холостого хода

    Меры по снижению тока холостого хода

    Ток при нахождении трансформатора в режиме холостого хода возникает, благодаря конструктивным особенностям сердечника. Для ферромагнитного материала, попавшего в электрическое поле переменного тока, характерно наведение вихревых индуктивных токов Фуко, вызывающих нагревание данного элемента.

    Чтобы снизить вихревые токи, сердечник изготавливают не в виде цельной детали, а набирают из пакета пластин небольшой толщины. Между собой пластины изолируются. Дополнительная мера – изменение свойств самого материала, позволяющее увеличить порог магнитного насыщения.

    Чтобы не допустить разрыва магнитного потока с возникновением поля рассеивания, пластины тщательно подгоняют в процессе набора. Отдельные элементы шлифуют, с получением гладкой, идеально прилегающей поверхности.

    Также потери снижаются за счёт более полного заполнения окна магнитопровода. Это позволяет обеспечить оптимальные показатели массы и габаритов агрегата.

    Холостой ход трансформатора – режим, при котором можно рассчитать важные характеристики. Это проводится для оборудования, находящегося в эксплуатации и на стадии проектирования.

    Потери холостого хода трансформаторов

    Объект: . Офис

    Площадь: . 42 м.кв

    Необходимо было переоборудовать одну из квартир в нашем доме под офис ТСЖ. По рекомендациям было принято решение обратиться в Энерджи.

    Объект: . Квартира

    Площадь: . 58 м.кв

    Я-мама трех дочек. С переездом в новую квартиру в Москве столкнулись с проблемой, как разместить троих детей в одной комнате и при этом.

    Объект: . Дом

    Площадь: . 680 м.кв

    Моя детская мечта, обзавестись своим большим домом, и вот этот момент наступил! Мы с мужем начали думать над проектом, как все будет, что.

    Объект: . Дом

    Площадь: . 280 м.кв

    С женой решили переехать и заняться строительством нового дома. Понадобилась помощь в проектировании инженерных систем. Долго искали.

    Объект: . Квартира

    Площадь: . 156 м.кв

    Заказывала дизайн-проект проект, для квартиры с инженерными проектами в комплекте. Сама не хотела ничего подобного делать и вообще в этом.

    Объект: . Дом

    Площадь: . 64 м.кв

    Давно с мужем мечтали о загородном доме. Купили участок с домом, но дизайн интерьера в нем нам совсем не нравился, мы решили сделать ремонт.

    Объект: . Квартира

    Площадь: . 68 м.кв

    После приобретения квартиры столкнулись с необходимостью ремонта. По совету знакомых мы обратились в ENERGY-SYSTEM. В минимально сжатые.

    Объект: . Дом

    Площадь: . 98 м.кв

    Срочно понадобился проект перепланировки загородного дома. Перебрала кучу компаний, но везде дорого, либо не успевают сделать в назначенный.

    Объект: . Квартира

    Площадь: . 64 м.кв

    Родители на свадьбу подарили нам трехкомнатную квартиру. Но сама квартира была в таком ужасном состоянии, что я даже не знала с чего начать.

    Объект: . Стоматология

    Площадь: . 54 м.кв

    Решила открыть частную стоматологию, о которой мечтала с детства. Взяла в аренду помещение, нужен был дизайн-проект, обратилась в Энерджи.

    Что такое потери холостого хода трансформатора

    Любые потери энергии могут приводить к перерасходу материалов и топлива, что приводит к значительному увеличению стоимости энергоресурсов. Чтобы потери не приводили к серьезным финансовым затратам, на трансформаторах должны периодически проводиться профилактические и электроизмерительные работы, которые позволяют своевременно выявить любые проблемы и неполадки в работе оборудования.

    Самой распространенной причиной проблем в работе трансформаторов являются потери холостого хода. Холостым ходом называется один из режимов работы прибора, в процессе которого выделенное питание подается на одну обмотку устройства, в то время как остальные обмотки разомкнуты. Потери холостого хода трансформатора – это любые утечки и потери, возникающие во время такого режима работы оборудования. Утечки обязательно возникают при номинальных уровнях частоты, напряжения и других параметров электрической энергии. Потери холостого хода сказываются на качестве электроснабжения, о чем следует помнить при создании проектов реконструции электрики в домах и на других объектах.

    Пример проекта технического отчета нежилого помещения

    Потери в работе трансформатора

    В режиме работы холостого хода устройства могут возникать различные утраты мощности. Чаще всего такие проблемы бывают связаны с магнитными потерями мощности в стальных элементах устройства, с потерями на первичной обмотке, а также с проблемами в изоляции оборудования.

    Утечки, возникающие из-за проблем в изоляции, принято называть диэлектрическими. Такие неполадки возникают только на оборудовании, работающем на высоких частотах. Для стандартного силового оборудования, работающего со стандартной частотой, потери из-за изоляции не отличаются высокими характеристиками, а потому даже не берутся в расчет при исследовании трансформаторов специалистами. Утечки мощности на первичной обмотке могут отличаться большей величиной, но даже они не превышают 1% от величины потерь холостого хода.

    Наиболее важной долей утечек и электрических потерь являются магнитные потери. Все магнитные потери в трансформаторах можно разделить на две большие группы: потери от вихревых токов и от гистерезиса. Потери от гистерезиса в современных трансформаторах обычно составляют не более 20-25%. Это обусловлено тем, что в современном оборудовании принято использовать высококачественную электротехническую сталь. Более 75% потерь на трансформаторах происходит из-за вихревых токов.

    Качество стали

    Чтобы правильно определить процентные потери из-за различных магнитных причин при нормальной работе трансформаторного оборудования, специалистам обязательно нужно будет учитывать характеристики электротехнической стали, используемой в устройстве. Для проведения измерений нужно учесть также технологические особенности магнитной системы, массу, методику производства стальных пластин и другие ее характеристики.

    Все факторы, влияющие на потери трансформатора можно разделить на две группы: конструктивную и техническую. К конструктивной группе факторов принято относить форму, размеры и используемую методику крепежа металлических пластин, способ их прессовки, особенности обработки стержней и т.д. Технологическими факторами называют методику резки стальных пластин, используемые технологии для удаления заусенцев на них, методику отжига, материал лакировки и т.д.

    Достаточно распространенными причинами потерь на трансформаторах являются ошибки при производстве элементов такого оборудования, а также ошибки в ходе сборки трансформаторного устройства.

    Согласно нормам ГОСТа, правильно собранный трансформатор должен иметь уровень реальных потерь с отклонением не более 5% от расчетного уровня потерь, указанного в технической документации.

    На что сказываются потери и от чего они зависят

    В процессе транспортировки электрической энергии от объектов производства до конечного потребителя происходят серьезные потери. Объем потерь при транспортировке может составлять до 18%, причем, большая часть этих потерь приходится именно на трансформаторное оборудование.

    Объем потерь обязательно должен учитываться проектировщиками при создании систем электрического потребления. От потерь будет зависеть себестоимость электрической энергии, стоимость обслуживания и ремонта электрического оборудования.

    До середины XX века для производства трансформаторов использовалась сталь горячей прокатки, которая отличалась низкими техническими характеристиками. В 50-х годах прошлого столетия такую сталь начали постепенно заменять металлом холодной прокатки с зерновой структурой. Основным достоинством более современной стали являлся более высокий уровень магнитной проницаемости, а потому и большая эффективность трансформаторного оборудования в целом.

    С тех пор и до наших дней технологии производства холоднокатаной стали постоянно улучшались и сегодня параметры таких материалов еще больше улучшились.

    В настоящее время уровень потерь холостого хода трансформаторного оборудования значительно снизился за счет применения более современной и функциональной стали, улучшения конструкции магнитных систем и модернизации сердечников.

    Если рассматривать особенности современной стали, используемой для создания пластин, то ее положительные свойства связаны с тем, что с течением времени производители улучшали ориентацию доменов, уменьшали толщину стальных листов при производстве. Кроме того, очистка доменов сегодня осуществляется за счет лазерной обработки, что также сказывается на технических характеристиках конечных изделий. Занимающиеся измерениями и выбором трансформаторного оборудования специалисты должны знать отличия трансформаторов от автотрансформаторов.

    Причины потерь холостого хода

    Сегодня используются масляные и сухие трансформаторные приборы. До недавнего времени, масляные трансформаторы были более распространены, но они имеют ряд серьезных недостатков, к примеру, низкую пожаробезопасность и сложность размещения, потому сегодня сухие трансформаторы используются гораздо чаще.

    Среди основных причин потерь холостого хода в различных устройствах можно выделить следующие факторы:

    1. Коррозийные процессы на металлических элементах трансформаторов. Коррозия на металле появляется из-за нарушения защитного лакового слоя, из-за чего на оборудовании увеличиваются вихревые токи и происходит существенный нагрев металлических пластин.
    2. Витковые замыкания на обмотках, из-за которых могут появляться сильные скачки напряжения.
    3. Низкокачественная изоляция.
    4. Магнитные зазоры на металлических элементах.
    5. Слишком большое или слишком маленькое количество витков обмотки.
    6. Перегрев элементов трансформаторного оборудования.

    Это лишь самые основные причины потерь холостого хода, с которыми специалисты сталкиваются чаще всего. Существуют и другие факторы, из-за которых величина потерь холостого хода может превышать допустимые пределы, из-за чего вырастет себестоимость эксплуатации электрических систем. Для определения причин потерь на отдельном трансформаторе, собственнику потребуется заказать услуги профессиональных электроизмерений.

    Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

    Измерение тока и потерь холостого хода

    В соответствии с требованиями ПУЭ производится одно из измерений:
    а) при номинальном напряжении. Измеряется ток холостого хода. Значение тока не нормируется;

    Рис. 2.7. Схема проверки группы соединения обмоток силового трансформатора методом фазометра.


    Рис. 2.8. Схемы проверки группы соединения обмоток силовых трансформаторов методом двух вольтметров.

    б) при малом напряжении. Измерение производится с приведением потерь к номинальному напряжению или без приведения (метод сравнения).
    Опытом холостого хода трансформатора называется включение одной из его обмоток (обычно низкого напряжения) под номинальное напряжение. Потребляемый при этом ток называют током холостого хода Iхх (обычно выражают в % от Iном).

    Таблица 2.10. Векторные диаграммы и расчетные формулы для определения группы соединения силовых трансформаторов

    Примечание: Формулы табл. 2.10


    где U2 > и Кл соответственно линейное напряжение на зажимах обмотки низшего напряжения и линейный коэффициент трансформации.

    Потребляемую при этом активную мощность называют потерями холостого хода Рхх (кВт). Эта мощность расходуется, в основном, на перемагничивание электротехнической стали (потери на гистерезисе) и на вихревые токи. Ток и потери холостого хода являются паспортными данными силовых трансформаторов.

    Потери холостого хода трансформаторов Рхх, измеренные при нормальной частоте и весьма малом возбуждении (порядка нескольких процентов от номинального напряжения трансформатора), можно пересчитать к потерям холостого хода при номинальном напряжении по формуле

    где Р’хх= Ризм – Рпр потери, измеренные при подводимом при измерении напряжении (возбуждении) U;
    Рпр и Ризм — соответственно мощность, потребляемая приборами и суммарные потери в трансформаторе и приборах.
    n — показатель степени, равный для горячекатаной стали 1,8; для холоднокатаной стали — 1,9.

    Заводы-изготовители производят измерения потерь холостого хода при номинальном напряжении и при малом (обычно 380 В) напряжении.

    Измерение потерь холостого хода может быть произведено также при напряжении, равном 5 — 10% номинального. Отличие полученных значений потерь от заводских данных должно быть не более 10% для однофазных и не более 5% для трехфазных.

    Измерение потерь холостого хода производится при напряжении и по схемам, указанным в протоколе испытания завода-изготовителя.

    Если завод-изготовитель производил измерения потерь холостого хода только при номинальном напряжении трансформатора, то следует измерение потерь холостого хода произвести при напряжении 380 В и выполнить пересчет их к номинальному напряжению по формуле, указанной выше.

    В дальнейшем измерение потерь холостого хода следует производить при напряжениях 380 В. У исправных трехфазных трехстержневых трансформаторов соотношение потерь, как правило, не отличается от соотношений, полученных на заводе-изготовителе, более, чем на 5%.

    Для трансформаторов, имеющих переключающее устройство с токоограничивающим реактором, дополнительно производится опыт холостого хода на промежуточном положении «Мост».

    Измерение потерь холостого хода при напряжении 380 В следует производить до измерения сопротивления обмоток постоянному току и прогрева трансформатора постоянным током.

    При измерении потерь и тока холостого хода следует применять измерительные приборы класса точности 0,5. Для измерений могут использоваться переносные измерительные комплекты типа К-50 (К-51).

    При измерении потерь и тока холостого хода при номинальном напряжении обмоток выше 0,4 кВ рекомендуется применять измерительные трансформаторы класса точности 0,2.

    Потери холостого хода трехфазных трехстержневых трансформаторов измеряют при трехфазном или однофазном возбуждении.

    При трехфазном возбуждении измерения производят двумя однофазными ваттметрами или одним трехфазным ваттметром (см. рис. 2.9).

    Измеренные потери определяются как алгебраическая сумма потерь, измеренных каждым ваттметром. Потери в трансформаторе определяют как разность измеренных суммарных потерь и потерь в приборах (см. рис. 2.10), поскольку потери в приборах могут быть соизмеримы с потерями холостого хода.


    Рис. 2.9. Схемы включения приборов при проведении опыта холостого хода силовых трансформаторов.
    а — для однофазных трансформаторов; б — для трехфазных трансформаторов.

    Ток холостого хода трансформатора определяют как среднеарифметическое значение токов трех фаз.

    При измерении потерь холостого хода при однофазном возбуждении напряжением 380 В проводят три опыта с приведением трехфазного трансформатора к однофазному путем поочередного замыкания накоротко одной из его фаз и возбуждении двух других фаз.

    Первый опыт — замыкают накоротко обмотку фазы А, возбуждают фазы В и С трансформатора и измеряют потери.
    Второй опыт — замыкают накоротко обмотку фазы В, возбуждают фазы А и С трансформатора и измеряют потери.

    Рис. 2.10. Схемы измерения потерь холостого хода в трехфазных трансформаторов.
    а — для измерения суммарных потерь; б — для измерения потерь в приборах.

    Соединение первичной обмотки в треугольник

    Соединение первичной обмотки в звезду с выведенной нулевой точкой

    Группа соединения Υ0/Δ.
    Рис. 2.11.а. Схемы возбуждения трехфазных трансформаторов

    Третий опыт — замыкают накоротко обмотку фазы С, возбуждают фазы А и В трансформатора и измеряют потери.


    Группа соединения Y/Δ


    Группа соединения Υ/Υ
    Рис. 2.11.6. Схемы однофазного возбуждения трехфазных трансформаторов

    Обмотки любой фазы замыкают накоротко на соответствующих выводах одной из обмоток трансформатора. Схемы однофазного возбуждения трехфазного трансформатора для измерения потерь при малом напряжении для различных групп соединений приведены на рис. 2.11.

    Потери в трансформаторе при напряжении U’

    где U’ — приложенное напряжение при замерах потерь холостого хода;
    P’0АВ, Р’0ВС, Р’0АС — потери, определенные при указанных выше опытах (за вычетом потерь в приборах) при одинаковом значении подводимого напряжения.

    Приведенные к номинальному напряжению потери трансформатора измеренные при некотором малом напряжении U’ определяются

    где n — зависит от сорта трансформаторной стали: для горячекатаной 1,8; для холоднокатаной 1,9.

    При отсутствии дефектов и одинаковых значениях подведенного напряжения, приближенные соотношения между значениями фазовых потерь будут следующими:

    • при соединении возбуждаемой обмотки в звезду (с доступной нейтралью) или треугольник потери, измеренные при подведении питания к выводам обмоток фазы «А» и «С» практически одинаковы и, как правило, не менее, чем на 25% больше потерь, измеренных при подведении питания к выводам обмотки средней фазы «В»;
    • при соединении возбуждаемой обмотки в звезду без доступной нейтрали потери, измеренные при подведении питания к выводам «АВ» и «ВС», практически одинаковы, а потери, измеренные при подведении питания к выводам «АС» на 25% больше потерь, измеренных при подведении питания к выводам «АВ» и «ВС».

    Необходимо иметь ввиду, что если измеряют потери у нескольких одинаковых трансформаторов (одинаковая трансформаторная сталь и одинаковая величина подводимого напряжения), то у сравниваемых трансформаторов одинаковым значениям потерь холостого хода при номинальном напряжении (указанным заводом-изготовителем), должны соответствовать приблизительно одинаковые значения потерь при малом напряжении. Кроме того, у одинаковых трансформаторов соотношения фазовых потерь должны быть приблизительно равными.