Как рассчитать бестрансформаторный блок питания?

Простой бестрансформаторный блок питания с гасящим конденсатором.
Онлайн калькулятор расчёта элементов сетевого понижающего источника питания без гальванической развязки от сети.

Прежде, чем приступить к расчёту простого бестрансформаторного блока питания с гасящим конденсатором, давайте определимся с ориентацией:

1. Мы не извращенцы, мы нормальные дядьки и приличные барышни! А с теми, звездонутыми током из розетки. которые находят в этом не только минусы, но и плюсы. а также прочими ведьмами и чародеями мы не якшаемся и якшаться не станем.
2. Это не то чтобы мы скупердяи какие-то. Но люди бережливые — жадные с умом и с пользой, а на безвременную кончину электрооборудования, будь то мыслящая машина, или прибор какой измерительный, нам смотреть неприятно и западло.

Ладно, с этим понятно! А какие условия надо выполнить при остром желании совокупить электронное устройство с бестрансформаторным источником питания?

Пожалуйста:
Полная автономность питаемого аппарата, т.е. к нему не должны подключаться никакие внешние устройства ни по входу, ни по выходу, ни по каким-либо другим местам.

Диэлектрический (непроводящий) корпус и такие же ручки управления как у самого блока питания, так и у запитываемого от него устройства.

Сосредоточенный контроль за любым движением шаловливых ручонок в процессе настройки источника. Про измерительные приборы с питанием от сети — забыть. Схема простая, поверьте — заработает и без всяких осциллографов.

В самом распространённом виде схема простого бестрансформаторного блока питания имеет вид, показанный на рис.1.

Рис.1

Для ограничения броска тока при подключении блока к сети последовательно с конденсатором С1 и выпрямительным мостом Br1 включён резистор R2, а для разрядки конденсатора после отключения — параллельно ему резистор R1.
Бестрансформаторный источник питания в общем случае представляет собой симбиоз выпрямителя и параметрического стабилизатора. Конденсатор С1 для переменного тока представляет собой ёмкостное (реактивное, т.е. не потребляющее энергию) сопротивление Хс, величина которого определяется по формуле:
,
где F — частота сети (50Гц); С-ёмкость конденсатора С1.

Тогда ток, втекающий в источник, определяется, как:
,
где Uc — напряжение сети (220 В); Uст — выходное напряжение, соответствующее напряжению пробоя стабилитрона.
Номинал резистора R2 выбирается исходя из величины ≈ 0,025Xс.

Нормальным режимом работы приведённого блока питания является режим, при котором стабилитрон находится в режиме обратно-смещённого пробоя (режим стабилизации), благодаря чему напряжение на выходе источника поддерживается с заданной точностью в широком диапазоне выходных токов нагрузки.
Ясен жупел, что для поддержания этого режима необходимо удерживать ток, протекающий через стабилитрон, в диапазоне допустимых для данного полупроводника величин: Iст.min
А поскольку Iвх= Iст+Iн (см. Рис.1), то методом простого дедуктивного электроанализа делаем глобальный вывод — номинал конденсатора С1 следует выбирать из соображений величины входного тока Iвх= Iн.макс+Iст.мин , где Iн.макс — максимальный ток на выходе блока питания при заданном выходном напряжении, а Iст.мин — минимальный ток стабилизации стабилитрона, указанный в характеристиках полупроводника.

Минимальное значение ёмкости сглаживающего конденсатора С2 в двухполупериодных выпрямителях принято рассчитывать исходя из величины 1МкФ на каждый миллиампер тока, потребляемого нагрузкой, оптимальное — в 5-10 раз выше.

Краткий теоретический экскурс проведён, пора переходить к практической стороне вопроса:

ТАБЛИЦА РАСЧЁТА НОМИНАЛОВ ЭЛЕМЕНТОВ БЕСТРАНСФОРМАТОРНОГО БЛОКА ПИТАНИЯ.

Приведённая на Рис.1 схема обладает одной интересной особенностью. При увеличении мощности, отдаваемой в нагрузку, пропорционально снижается ток, протекающий через стабилитрон, что приводит к соответствующему росту КПД блока питания. Т.е. при максимальном токе нагрузки собственное потребление схемы будет в основном определяться мощностью, рассеиваемой на защитном резисторе R2.

Конденсатор C1 необходимо применять на напряжение не менее 400 Вольт, диодный мост на такое же напряжение, стабилитрон следует выбирать, исходя из необходимого напряжения стабилизации и максимально допустимого тока, процентов на 20-25 превышающего значение Iст.max, посчитанное таблицей.

А нажав на стрелку «назад» внизу страницы, можно познакомиться и с некоторым количеством иных схемотехнических решений, связанных с реализацией бестрансформаторных источников питания.

Как рассчитать бестрансформаторный блок питания

Питать низковольтную электро- и радиоаппаратуру выгоднее и проще от сети. Для этого наиболее приемлемы трансформаторные блоки питания, поскольку они безопасны в эксплуатации. Однако интерес к бестрансформаторным блокам питания (БТБП) со стабилизированным выходным напряжением не ослабевает. Одна из причин — сложность изготовления трансформатора. А вот для БТБП он не нужен — необходим лишь правильный расчет, но как раз это и пугает малоопытных начинающих электриков. Эта статья поможет сделать расчет и облегчит конструирование бестрансформаторного блока питания.

Упрощенная схема БПТП приведена на рис. 1. Диодный мост VD1 подключен к сети через гасящий конденсатор Сгас, включенный последовательно с одной из диагоналей моста. Другая диагональ моста работает на нагрузку блока — резистор Rн. Параллельно нагрузке подключены фильтрующий конденсатор Сф и стабилитрон VD2.

Расчет блока питания начинают с задания напряжения Uн на нагрузке и силы тока Iн. потребляемого нагрузкой. Чем больше будет емкость конденсатора Сгас, тем выше энергетические возможности БПТП.

Расчет емкостного сопротивления

В таблице приведены данные по емкостному сопротивлению Хс конденсатора Сгас на частоте 50 Гц и среднему значению тока Iср, пропускаемого конденсатором Сгас, вычисленные для случая, когда Rн=0, то есть при коротком замыкании нагрузки. (Ведь к этому аномальному режиму работы БТБП не чувствителен, и в этом еще одно огромное преимущество перед трансформаторными блоками питания.)

Иные значения емкостного сопротивления Хс (в килоомах) и среднего значения тока Iср (в миллиамперах) можно вычислить по формулам:

Сгас — емкость гасящего конденсатора в микрофарадах.

Если исключить стабилитрон VD2, то напряжение Uн на нагрузке и ток Iн через нее будет зависеть от нагрузки Rн. Подсчитать эти параметры легко по формулам:

Uн — в вольтах, Rн и Хн — в килоомах, Iн — в миллиамперах, Сгас — в микрофарадах. (Далее в формулах используются те же единицы измерения.)

С уменьшением сопротивления нагрузки напряжение на ней тоже уменьшается, причем по нелинейной зависимости. А вот ток, проходящий через нагрузку возрастает, правда, весьма незначительно. Так, например, уменьшение Rн с 1 до 0,1 кОм (ровно в 10 раз) ведет к тому, что Uн снижается в 9,53 раза, а ток через нагрузку увеличивается всего лишь в 1,05 раза. Эта «автоматическая» стабилизация тока выгодно отличает БТБП .от трансформаторных источников питания.

Мощность Рн на нагрузке, вычисляемая по формуле:

с уменьшением Rн снижается почти столь же интенсивно, как и Uн. Для того же примера потребляемая нагрузкой мощность уменьшается в 9,1 раза.

Поскольку ток Iн нагрузки при сравнительно небольших значениях сопротивления Rн и напряжения Uн на ней меняется крайне мало, на практике вполне допустимо пользоваться приближенными формулами:

Восстановив стабилитрон VD2, получим стабилизацию напряжения Uн на уровне Uст — значения практически постоянного для каждого конкретного стабилитрона. И при небольшой нагрузке (большом сопротивлении Rн) станет выполняться равенство Uн=Uст.

Расчет сопротивления нагрузки

До каких же пределов можно уменьшать Rн, чтобы равенство Uн=Uст было справедливо? До тех, пока выполняется неравенство:

Следовательно, если сопротивление нагрузки окажется меньше рассчитанного Rн, напряжение на нагрузке уже не будет равно напряжению стабилизации, а окажется несколько меньше, поскольку ток через стабилитрон VD2 прекратится.

Расчет допустимого тока через стабилитрон

А теперь определим, какой ток Iн будет течь через нагрузку Rн и какой ток — через стабилитрон VD2. Понятно, что

По мере уменьшения сопротивления нагрузки потребляемая ею мощность Pн=IнUн=U 2 ст/Rн возрастает. А вот средняя потребляемая БПТП мощность, равная

остается неизменной. Объясняется это тем, что ток Iср разветвляется на два — Iн и Iст — и, в зависимости от сопротивления нагрузки, перераспределяется между Rн и стабилитроном VD2, причем так, что чем меньше сопротивление нагрузки Rн, тем меньший ток идет через стабилитрон, и наоборот. Значит, если нагрузка мала (или вовсе отсутствует), стабилитрон VD2 будет находиться в наиболее тяжелых условиях. Вот почему снимать нагрузку с БПТП не рекомендуется, иначе весь ток пойдет через стабилитрон, что может привести к выходу его из строя.

Амплитудное значение напряжения сети равно 220·√2=311(B). Импульсное значение тока в цепи, если условно пренебречь конденсатором Сф, может достигать

Соответственно, стабилитрон VD2 должен надежно выдерживать этот импульсный ток при случайном отключении нагрузки. Не следует забывать и о возможных перегрузках по напряжению в осветительной сети, составляющих 20. 25% от номинала, и рассчитывать ток, проходящий через стабилитрон при отключенной нагрузке с учетом поправочного коэффициента 1,2. 1,25.

Если нет мощного стабилитрона

Когда стабилитрона подходящей мощности нет, его полноценно удается заменить диодно-транзисторным аналогом. Но тогда БТБП следует строить по схеме, показанной на рис. 2. Здесь ток, протекающий через стабилитрон VD2, уменьшается пропорционально статическому коэффициенту передачи тока базы мощного n-p-n транзистора VT1. Напряжение UCT аналога будет примерно на 0,7В превышать Uст самого маломощного стабилитрона VD2, если транзистор VT1 кремниевый, или на 0,3В — если он германиевый.

Здесь применим и транзистор структуры p-n-p. Однако тогда используют схему, показанную на рис. 3.

Расчет однополупериодного блока

Наряду с двухполупериодным выпрямителем в БТБП иногда применяют и простейший однополупериодный (рис. 4). В таком случае его нагрузка Rн питается лишь положительными полупериодами переменного тока, а отрицательные проходят через диод VD3, минуя нагрузку. Поэтому средний ток Iср через диод VD1 будет вдвое меньше. Значит при расчете блока вместо Хс следует брать в 2 раза большее сопротивление, равное

а средний ток при замкнутой накоротко нагрузке будет равен 9,9·πСгас=31,1 Сгас. Дальнейший расчет такого варианта БПТП ведут совершенно аналогично предыдущим случаям.

Расчет напряжения на гасящем конденсаторе

Принято считать, что при напряжении сети 220В номинальное напряжение гасящего конденсатора Сгас должно быть не менее 400В, то есть примерно с 30-процентным запасом по отношению к амплитудному сетевому, поскольку 1,3·311=404(В). Однако в некоторых наиболее ответственных случаях его номинальное напряжение должно быть 500 и даже 600В.

И еще. Подбирая подходящий конденсатор Сгас, следует учитывать, что применять в БТБП конденсаторы типа МБМ, МБПО, МБГП, МБГЦ-1, МБГЦ-2 нельзя, так как они не рассчитаны на работу в цепях переменного тока с амплитудным значением напряжения, превышающим 150В.

Наиболее надежно в БТБП работают конденсаторы МБГЧ-1, МБГЧ-2 на номинальное напряжение 500В (от старых стиральных машин, люминесцентных светильников и т.п.) или КБГ-МН, КБГ-МП, но на номинальное напряжение 1000В.

Фильтрующий конденсатор

Емкость Фильтрующего конденсатора Сф аналитическим путем рассчитать затруднительно. Поэтому ее подбирают экспериментально. Ориентировочно следует считать, что на каждый миллиампер среднего потребляемого тока требуется брать как минимум 3. 10 мкФ этой емкости, если выпрямитель БТБП двухполупериодный, или 10. 30 мкФ, если он однополупериодный.

Номинальное напряжение используемого оксидного конденсатора Сф должно быть не менее Uст·А если стабилитрона в БТБП нет, а нагрузка включена постоянно, номинальное напряжение фильтрующего конденсатора должно превышать значение:

Если нагрузка не может быть включена постоянно, а стабилитрон отсутствует, номинальное напряжение фильтрующего конденсатора должно составлять более 450В, что вряд ли приемлемо из-за больших размеров конденсатора Сф. Кстати, в этом случае снова подключать нагрузку следовало бы лишь после отключения БТБП от сети.

И это еще не все

Любой из возможных вариантов БТБП желательно дополнить еще двумя вспомогательными резисторами. Один из них, сопротивление которого может быть в пределах 300кОм. 1МОм, включают параллельно конденсатору Сгас. Этот резистор нужен для ускорения разрядки конденсатора Сгас после отключения устройства от сети. Другой — балластный — сопротивлением 10. 51 Ом включают в разрыв одного из сетевых проводов, например, последовательно с конденсатором Сгас. Этот резистор будет ограничивать ток через диоды моста VD1 в момент подключения БТБП к сети. Мощность рассеяния обоих резисторов должна быть не менее 0,5 Вт, что нужно для гарантии от возможных поверхностных пробоев этих резисторов высоким напряжением. За счет балластного резистора стабилитрон будет нагружен несколько меньше, но вот средняя потребляемая БТБП мощность заметно увеличится.

Читайте также  Какое сопротивление у светодиода в лампочке?

Какие взять диоды

Функцию двухполупериодного выпрямителя БТБП по схемам на рис. 1. 3 могут выполнять диодные сборки серии КЦ405 или КЦ402 с буквенными индексами Ж или И, если средний ток не превышает 600 мА, либо с индексами А, Б, если значение тока достигает 1 А. Пригодны также четыре отдельных диода, включенных по схеме моста, например серий КД105 с индексами Б, В или Г, Д226 Б или В — до 300 мА, КД209 А, Б или В — до 500. 700 мА, КД226 В, Г или Д — до 1,7 А.

Диоды VD1 и VD3 в БТБП по схеме на рис. 4 могут быть любыми из перечисленных выше. Допустимо также использовать две диодные сборки КД205К В,Г или Д в расчете на ток до 300 мА либо КД205 А,В,Ж или И — до 500 мА.

И последнее. Бестрансформаторный блок питания, а также аппаратура, подключенная к нему, подключены в сеть переменного тока непосредственно! Поэтому они должны быть надежно за-изолированы снаружи, скажем, размещены в пластмассовом корпусе. Кроме того, категорически запрещается «заземлять» какой-либо из их выводов, а также вскрывать корпус при включенном устройстве.

Предлагаемая методика расчета БПТП опробована автором на практике в течение ряда лет. Весь расчет ведется, исходя из того, что БПТП — это по существу параметрический стабилизатор напряжения, в котором роль ограничителя тока выполняет гасящий конденсатор.

Бестрансформаторный блок питания с конденсаторным делителем + online-калькулятор

Итак, начнём, с того, зачем вообще нужен такой блок питания. А нужен он затем, что позволяет запитать слаботочные нагрузки не заморачиваясь с намоткой трансформаторов и используя минимум компонентов. Минимальное число компонентов (и тем более отсутствие таких габаритных компонентов как трансформатор), в свою очередь, делают блок питания с конденсаторным делителем (иногда говорят «с емкостным делителем») простым и исключительно компактным.

Рассмотрим схему, изображённую на рисунке:

Здесь Z1 = -j/wC1; Z2 = -j/wC2 — реактивные сопротивления конденсаторов

Найдём ток нагрузки: iн = i1-i2 (1) — первый закон Кирхгофа для узла 1.

Учитывая, что по закону Ома для участка цепи: i1=u1/Z1, а u1=uc-u2 ;

выражение (1) можно переписать в следующем виде:

или по другому: Iн=jwC1(Uсм-U)-jwC2U , где индекс «м» — это сокращение от слова максимальный, он говорит о том, что речь идёт об амплитудных значениях.

Раскрыв скобки и сгруппировав это выражение, получим:

Iн=jwC1(Uсм-U(121)) (2) — вот, собственно, мы и получили выражение для тока через нагрузку Zн, в зависимости от напряжения на этой нагрузке и напряжения питающей сети. Из формулы (2) следует, что амплитудное значение тока равно: Iнм=wC1(Uсм-U(121)) (3)

Предположим, что наша нагрузка — это мост, сглаживающий конденсатор и, собственно, полезная нагрузка (смотрим рисунок).

При начальном включении, когда конденсатор C3 разряжен, величина U2 будет равна нулю и через мост потечёт пусковой зарядный ток, максимальное начальное значение которого можно найти, подставив в формулу (3) величину U равную нулю (Iпуск=wC1Ucм). Это значение соответствует худшему случаю, когда в момент включения мгновенное значение напряжения в сети было равно максимальному значению.

С каждым полупериодом конденсатор C3 будет заряжаться и наше напряжение U, равное по модулю напряжению на конденсаторе C3 и напряжению на полезной нагрузке (обозначим его как Uвых), также будет расти, пока не вырастет до некоторого постоянного значения. При этом ток через полезную нагрузку будет равен средневыпрямленному току, т.е. Iвых=Iнм*2/»Пи» (для синусоидального входного тока).

Учитывая также, что Ucм=Uc*1,414 (Uc — действующее значение питающего напряжения), а w=2*»Пи»*f, где f-частота питающего напряжения в герцах, получим:

Iвых = 4fC1(1,414Uc-Uвых(1+C2/C1)), если ещё к тому же учесть падение на диодах моста, то окончательно получится:

Iвых = 4fC1(1,414Uc-(Uвых+2Uд)(1+C2/C1)) (4) , где — падение на одном диоде

Из этого выражения можно получить и обратную зависимость Uвых(Iвых):

Uвых=(1,414Uc-Iвых/4fC1)/(1+C2/C1)-2 (5)

Что видно из двух последних формул? Из них видно, что с увеличением потребляемого нагрузкой тока напряжение на нагрузке уменьшается, а с уменьшением потребляемого тока — оно растёт. Разомкнув цепь нагрузки (то есть приняв ток нагрузки равным нулю) найдём напряжение холостого хода: Uвых хх = 1,414Uc/(1+C2/C1)-2 (6). Очевидно, что мост и конденсатор C2 должны быть рассчитаны на напряжение не менее U2м макс = Uвых хх + 2Uд = 1,414Uc/(1+C2/C1).

Строго говоря наши расчёты не совсем безупречны, потому что реальные процессы тут вообще будут нелинейными, но наши небольшие упрощения сильно облегчают расчеты и не сильно влияют на конечный результат.

А вот теперь самое интересное. Частенько читал в интернете, что линейные стабилизаторы не работают в таких схемах, сгорают и прочее и прочее. Ну что же, давайте ещё раз перерисуем нашу схему, добавив в неё линейный стабилизатор напряжения (смотрите рисунок).

(Uст. , — напряжение и ток нагрузки).

Здесь наше Uвых (напряжение на конденсаторе C3) является входным напряжением стабилизатора (Uin). Как мы помним, при отсутствии нагрузки напряжение на выходе будет максимально и равно Uвых хх. Так что вполне очевидно, что для нормальной работы наш линейный стабилизатор должен выдерживать входное напряжение не менее Uвых хх. Или можно сказать по другому, — конденсаторы должны быть подобраны таким образом, чтобы выходное напряжение холостого хода (имеется ввиду выходное напряжение конденсаторного делителя) не спалило стабилизатор при случайном отключении нагрузки (мало ли, неконтакт какой-нибудь).

Максимальный ток нагрузки можно определить, подставив в формулу (4) вместо Uвых минимальное входное напряжение стабилизатора. Как видите, главное — всё правильно рассчитать, тогда и стабилизатору ничто не угрожает.

Эта схема уже вполне рабочая, но есть у неё один существенный недостаток. В случае, когда нам нужно получить входное напряжение стабилизатора существенно ниже питающего напряжения сети (при питании от 220 В нам именно это и нужно), ёмкость конденсатора C2 получается довольно значительной. А неполярный конденсатор значительной ёмкости — довольно дорогое удовольствие (да и габариты не радуют). Можно ли как-то вместо неполярного конденсатора использовать, например, обычные электролитические?

Оказывается можно. Для этого переделаем нашу схему ещё раз, таким образом, как на рисунке. В данной схеме вместо одного конденсатора С2 используются два конденсатора С2 и С2‘ (такой же ёмкости, как и в случае, когда конденсатор C2 всего один), развязанные через диоды моста. При этом обратное напряжение на каждом из этих конденсаторов не превышает падения напряжения на диоде.

Несмотря на то, что в данном случае вместо одного неполярного конденсатора используется два электролитических, такая схема получается экономичнее и по деньгам и по габаритам.

Правда тут есть один нюанс. Выгорание одного из диодов моста может привести к тому, что на электролитических конденсаторах всё-таки появится полное обратное напряжение. Если такое произойдёт — конденсатор вероятнее всего взорвётся.

Ещё хотелось бы отметить, что обращаться с бестранформаторными блоками питания следует крайне осторожно, поскольку такая схема не развязана от питающей сети и прикосновение к её токопроводящим частям может вызвать серьёзное поражение электрическим током.

Online-калькулятор для расчёта блока питания с конденсаторным делителем:

(для правильности расчётов используйте в качестве десятичной точки точку, а не запятую)

1) Исходные данные:

(если вы не знаете минимального входного напряжения стабилизатора и величину падения напряжения на диодах моста, то расчёт будет сделан для: Uin=Uст и Uд=0, — как будто минимальное входное напряжение равно выходному напряжению стабилизатора и диоды идеальные).

2) Расчётные данные:

Для примера: при C1=1мкФ, С2 (или С2 и С2‘)=22мкФ, Uc=220В, f=50Гц и стабилизаторе LM7805, — можно получить максимальный ток нагрузки порядка 30-35мА, что вполне позволяет запитывать, например, контроллеры, оптосимисторы и даже некоторые релюшки. При этом напряжение на LM-ке даже в худшем случае (без нагрузки) не превысит 13,5 вольт.

Введение

Итак, давайте разберем последовательность расчета бестрансформаторного источника питания, рассмотренного в предыдущей статье. Описанная метода не претендует на истину в последней инстанции и может отличаться от других источников. Дополнительную информацию по такой схеме можно почерпнуть на зарубежных ресурсах, погуглив в сети запрос «capacitor power supply».

1. Рассчитываем ток нагрузки

Первое от чего мы должны отталкиваться при расчете бестрансформаторного источника питания — это ток нагрузки. На рисунке 1 он обозначен как Iam, а в качестве нагрузки выступает резистор R3. Заменим этот резистор небольшой схемой с микроконтроллером и определим потребляемый ею ток.

Сделать это можно двумя способами:
— путем расчета, просуммировав примерное потребление всех компонентов схемы,
— с мощью амперметра включенного между источником напряжения и нашей схемой.

Второй способ, конечно, будет точнее, но он осуществим только при наличии собранной схемы. Попробуем выполнить теоретический расчет.

В схеме на рисунке 2 три основных потребителя — стабилизатор 7805, микроконтроллер ATtiny13 и светодиод. Для простоты положим, что микроконтроллер при подаче питания всего лишь зажигает светодиод, а потом крутится в бесконечном цикле.
Ток покоя стабилизатора 7805 по даташиту равен 5 мА (параметр quiescent current). При изменении тока нагрузки и входного напряжения значение тока покоя меняется на 0.5 — 0.8 мА. Значение небольшое и можно им пренебречь.
Оценить потребление микроконтроллера ATtiny13 можно по графику Active Supply Current vs. VCC, представленнму в даташите в разделе Electric Characteristics. Допустим, у нас напряжение питания 5 Вольт, а тактовая частота — 9.6 МГц. При таких условиях attiny13 потребляет в активном режиме 5.5 мА.
Ток светодиода рассчитываем по формуле:

Iled = (Upin — Uled)/R2

где Upin — напряжение логической единицы на выводе микроконтроллера, В; Uled — прямое падение напряжения на светодиоде, В.

Для зеленого светодиода прямое падение напряжения равно примерно 2 В, Upin примерно 5 В, значит ток через светодиод будет равен:

Iled = (5 — 2)/330 = 9 мА.

Если быть честным, то при любом вытекающем токе напряжение на выводе микроконтроллера будет меньше напряжения питания. В чем можно убедиться, изучив график I/O Pin Source Current vs. Output Voltage (Low Power Ports, VCC = 5V), представленный в даташите. При токе 9 мА, напряжение на выводе микроконтроллера ATtiny13 будет примерно 4.8 В. Но мы, опять таки, не учитываем такие мелочи в расчете.

Итого: 5 + 5.5 + 9 = 19.5 мА.
Реальное значение потребляемого тока 18.6 мА.

Как видишь, разница незначительная. Округлим расчетное значение в большую сторону и будем отталкиваться от значения Iam = 20 мА.

2. Рассчитываем входной ток источника питания

Ток нагрузки нам известен, теперь нужно рассчитать значение тока на входе источника питания. На рисунке 1 он обозначен как Iac. В отличие от постоянного тока нагрузки, ток на входе бестрансформаторного источника питания переменный. А переменный ток характеризуется такими величинами как амплитудное и действующее значение.
Амплитудное значение переменного тока — это максимальное значение тока за период колебания. Действующее значение переменного тока — это такая величина постоянного тока, который за время равное одному периоду колебания переменного тока, выделит на том же сопротивлении R такое же количество тепла, что и переменный ток.
Для переменного тока, изменяющегося по синусоидальному закону, амплитудное и действующее значения связаны следующим соотношением:

Читайте также  Электропроводящая смазка для болтовых соединений

где Iac — действующее значение, А; а Im — амплитудное, А.

Действующее значение переменного тока на входе схемы Iac рассчитывается из тока нагрузки Iam по следующей формуле:

Таким образом, ток на входе схемы будет равен:

Iac = 20*2.221 = 44,4 мA действующее значение
Im = 44*1.41 = 62.6 мA амплитудное значение

3. Определяем входное напряжение стабилизатора

У всех линейных стабилизаторов, к которым относится и микросхема 7805, есть такой параметр как dropout напряжение — наименьшая разность напряжений между входом и выходом. Этот параметр определяет минимальное входное напряжение стабилизатора, при котором он все еще будет работать в номинальном режиме. Для микросхемы 7805 выходное напряжение равно 5 В, а типовое dropout напряжение равно 2 В. Значит минимальное входное напряжение для стабилизатора 7805 будет составлять 5 + 2 = 7 В. С учетом того, что на конденсаторе С2 напряжение будет пульсировать, 7 Вольт — это минимальное значение пульсирующего напряжения. Накинем 1 В для запаса и будем отталкиваться от значения 8 Вольт.

В качестве стабилизатора не обязательно выбирать микросхему 7805, можно использовать то, что есть под рукой. При этом нужно учитывать следующие параметры:
— максимальное входное напряжение стабилизатора,
— максимальный выходной ток стабилизатора,
— dropout напряжение,
— максимальная рассеиваемая мощность.

4.Рассчитываем емкость сглаживащего конденсатора C2

Нагрузка у нас запитывается от сети во время положительного полупериода входного напряжения. Во время отрицательного полупериода нагрузка получает энергию от конденсатора С2. За время отрицательного полупериода он не должен успеть разрядиться до напряжения меньше 8 В. Этого не случиться, если начальное напряжение на конденсаторе и его емкость достаточны для поддержания заданного тока нагрузки.

Емкость сглаживающего конденсатора рассчитывается по следующей формуле.

где Iam — ток нагрузки, А; f — частота переменного напряжения, Гц; С — емкость конденсатора, Ф; dU — размах пульсаций, В.

Umin у нас равно 8 В.
Umax выбираем из следующих соображений. Большее напряжение позволяет использовать конденсатор меньшей емкости, но сильнее нагружает стабилизатор, который вынужден гасить на себе остаточное напряжение. Меньшее напряжение разгружает стабилизатор напряжения, но требует конденсатор большей емкости.
Я выбрал 9.3 В.

С2 > 0.02/(2*50*(9.3 — 8)) = 0.000153 Ф = 153 мкФ

Выбираем большее соседнее значение из ряда Е12 – 180 мкФ.
Также не забываем про максимальное напряжение, на которое рассчитан конденсатор. Берем с полуторным или двойным запасом, например на 16 Вольт.

5.Выбираем стабилитрон VD1

Требуемое номинальное напряжение стабилитрона равно максимальному напряжению на сглаживающем конденсаторе С2 плюс величина падения напряжения на диоде VD2, то есть:

0.7 — это значение падения напряжения на диоде, включенном в прямом направлении. Стандартное значение, используемое в инженерных расчетах.

Помимо номинального напряжения стабилизации также важны такие параметры стабилитрона как номинальный и максимальный токи стабилизации, максимальный постоянный прямой ток, максимальный импульсный ток и рассеиваемая мощность.

Для данной схемы я выбрал стабилитрон 1N4740А, который имеет следующие характеристики:

— номинальное напряжение стабилизации 10 В,
— номинальный ток стабилизации 25 мА,
— максимальный ток стабилизации 91 мА,
— максимальный импульсный ток 454 мА,
— максимальный ток в прямом направлении 200 мА,
— рассеиваемая мощность 500 мВт.

В положительный полупериод сетевого напряжения через стабилитрон может протекать ток в диапазоне от 0 до 62 мА (Im). Если нагрузка будет потреблять меньший ток, стабилитрон будет брать часть тока на себя, если нагрузка отключится, весь входной ток будет протекать через стабилитрон. Поэтому максимальный ток стабилизации стабилитрона должен быть больше амплитудного значения входного тока. В нашем случае > 62 мА. У стабилитрона 1N4740 максимальный ток стабилизации 91 мА, значит, по этому параметру он подходит.

В отрицательный полупериод стабилитрон будет работать как обычный диод, и через него будет протекать весь входной ток источника питания. Нагрузка в этот момент запитывается от конденсатора C2. В прямом направлении стабилитрон выдерживает 200 мА, это больше амплитудного значения входного тока (62 мА), значит, по этому параметру он тоже подходит.

Рассчитаем максимальную мощность, которая будет рассеиваться на стабилитроне. В положительный полупериод сетевого напряжения на стабилитроне будет 10 В, в отрицательный полупериод Ud = 1.2 В (значение из даташита для тока 200 мА). Для расчета возьмем среднее значение переменного тока за полпериода. Оно рассчитывается по формуле:

Iav = (2 * Im)/3.14 = 0.637*Im

где Im — амплитудное значение переменного тока, А.

Максимальная мощность рассеиваемая на стабилитроне будет равна:

P = (0.637 * Im)*Ust + (0.637 * Im)*Ud = (0.637 * Im)*(Ust + Ud)
P = 0.637*62*(10 + 1.2) = 442 мВт

Такая мощность будет рассеиваться на стабилитроне в худшем случае — когда через него будет идти весь ток нагрузки. На практике значение мощности будет меньше, так как в положительный полупериод через стабилитрон будет протекать меньший ток. По этому параметру стабилитрон тоже проходит.

6. Выбираем диод VD2

Ток нагрузки Iam = 20 мА.
Максимальное обратное напряжение на диоде приблизительно равно номинальному напряжению стабилитрона VD1, то есть 10 В.
Мощность, рассеиваемая на диоде, равна P = Ud*Iam = 0.7 * 20 = 14 мВт.
Берем по каждому из этих значений двойной запас и выбираем диод. Я выбрал диод 1N4148.

7. Рассчитываем резистор R2

Сетевое напряжение бытовой электросети составляет 220 В. Эта так называемое действующее значение. Действующее значение в корень из 2 раз меньше амплитудного значения. Я уже говорил об этом выше.
Амплитудное значение сетевого напряжения составляет:

Um = 220 * 1.41 = 311 В

В начальный момент включения схемы, когда конденсатор C1 разряжен, может происходить бросок тока. Нужно подобрать такой номинал резистора R2, чтобы при максимальном входном напряжении импульсный ток через стабилитрон был меньше 454 мА.

R2 > Um/Ispike = 311/450 = 691 Ом

Выбираем ближайшее значение из ряда E24 — 750 Ом

Мощность рассеиваемая на этом резисторе будет равна

Pr = Iac * Iac * R = 44 * 44 * 750 Ом = 1.5 Вт

Берем 2 ваттный резистор.

8. Рассчитываем и выбираем конденсатор С1

Номинал конденсатора С1 рассчитывается по следующей формуле:

где Iac – действующее значение тока в цепи, А; Uac – минимальное действующее значение напряжения в цепи, В; f – частота переменного напряжения, Гц; R – сопротивление резистора R2, Ом.

Формула выведена из закона Ома для цепи переменного тока, состоящей из конденсатора и резистора.

Все величины известны:

Iac = 44 мА
Uac = 220 В
R2 = 750 Ом
f = 50 Гц

Подставляем их формулу и получаем значение C1. Оно будет равно 650 нФ. Возьмем большее соседнее значение из ряда Е12 — 680 нФ.

Рабочее напряжение С1 должно быть больше чем Um = 311 В. Можно взять конденсатор с рабочим напряжением 400 В, но лучше взять конденсатор рассчитанный на 600 В.

В качестве C1 нужно выбирать конденсаторы, предназначенные для работы в цепях переменного тока, например отечественные металлопленочные конденсаторы К73-17 или их импортные аналоги. Если не удается подобрать конденсатор нужное емкости, можно соединить два конденсатора меньшей емкости параллельно.

9. Выбираем резистор R2

Резистор R1 выбираем номиналом 1.5-2 МОм. Мощность, которая будет рассеиваться на этом резисторе, можно грубо оценить по формуле:

P = (Uac*Uac)/R1 = (220*220)/1500000 = 32 мВт

Выбираем резистор мощностью 0.125 — 0.25 Вт.

Конечный вариант схемы

Разъем Х1 для подключения устройства к сети.
Разъем Х3 для подачи постоянного напряжения при отладке и программировании устройства.

Несколько слов о правилах безопасности

Ну и напоследок о самом главном.
Не подключайте устройство с бестрансформаторным источником питания к компьютеру или программатору, когда оно запитано от сети. Что-то из них может сгореть.
Для программирования или отладки устройства запитывайте его от отдельного источника постоянного напряжения, когда оно отключено от сети.
Не дотрагивайтесь до элементов и проводников устройства, когда оно подключено к сети, это может привести к поражению электрическим током.
Не подключайтесь к работающему устройству осциллографом.

Как рассчитать емкость гасящего конденсатора простого блока питания

Блок питания с гасящим конденсатором представляет собой простейший вариант запитать какое нибудь маломощное устройство.

При всей своей простоте он имеет и два минуса:
1. Он гальванически связан с сетью! потому такие БП используются там, где нет вероятности прикосновения к контактам.
2. Такой Бп имеет не очень большой выходной ток. При увеличении выходного тока надо увеличивать емкость гасящего конденсатора и его габариты становятся существенными.

Внимание, будьте очень аккуратны, не прикасайтесь к контактам этого БП когда он включен.

Простейшая схема данного БП выглядит так:

Как можно увидеть из схемы, последовательно с сетью стоит конденсатор. Он то и является балластом,, на котором гасится часть напряжения.
Конденсатор не пропускает постоянный ток, но так как в сети переменный и конденсатор в итоге постоянно перезаряжется, то и получается, что в таком случае ток на выходе есть. Причем сила тока напрямую зависит от емкости конденсатора.

Собственно потому для расчета емкости конденсатора необходимо знать как минимум выходной ток нашего будущего БП, причем надо учесть и потребление стабилизатора, обычно это несколько мА.

И так. Есть две формулы, сложная и простая.
Сложная — подходит для расчета при произвольном выходном напряжении.
Простая — подходит в ситуациях, когда выходное напряжение не более 10% от входного.
I — выходной ток нашего БП
Uвх — напряжение сети, например 220 Вольт
Uвых — напряжение на выходе БП (или до стабилизаторе если такой есть), например 12 Вольт.
С — собственно искомая емкость.

Например я хочу сделать БП с выходным током до 150мА. Пример схемы приведен выше, вариант применения — радиопульт с питанием 5 Вольт + реле на 12 Вольт.
Подставляем наши 0.15 Ампера и получаем емкость 2.18мкФ, можно взять ближайший номинал из стандартных — 2,2мкФ, ну или «по импортному» — 225.

Все как бы вроде хорошо, схема простая, но есть несколько минусов, которые надо исключить:
1. Бросок тока при включении может сжечь диодный мост.
2. При выходе из строя конденсатора может быть КЗ
3. Если оставить как есть, то вполне можно получить разряд от входного конденсатора, так как на нем может долго присутствовать напряжение даже после отключения БП от сети.
4. При снятии нагрузки напряжение на конденсаторе до стабилизатора поднимется до довольно большого значения.

Решения:
1. Резистор R1 последовательно с конденсатором
2. Предохранитель 0.5 Ампера.
3. Резистор R2 параллельно конденсатору.
4. Супрессор на 12 Вольт параллельно конденсатору после диодного моста. Я не рекомендую здесь использовать стабилитроны, супрессоры рассчитаны на большую мощность рассеивания и схема будет работать надежнее.

На схеме красным цветом я выделил новые компоненты, синим — небольшое дополнение в виде светодиода.

Но гасящие конденсаторы используют часто и в дешевых светодиодных лампах. Это плохо, так как у таких ламп меньше надежность и часто высокие пульсации света.
Ниже упрощенный вариант схемы такой лампы.

Попробуем рассчитать емкость для такого применения, но так как напряжение на выходе будет явно больше чем 1/10 от входного, то применим первую формулу.
В качестве выходного напряжения я заложил 48 Вольт, 16 светодиодов по 3 Вольта на каждом. Конечно это все условно, но близко к реальности.
Ток — 20мА, типичный максимальный ток для большинства индикаторных светодиодов.

Читайте также  Бесстартерная схема включения ламп дневного света

У меня вышло, что необходим конденсатор емкостью 0.298 мкФ. Ближайший из распространенных номиналов — 0.27 или 0.33мкФ. Первый встречается гораздо реже, а второй уже будет давать превышение тока, потому можно составить конденсатор из двух параллельных, например по 0.15мкФ. При параллельном включении емкость складывается.

С емкостью разобрались, осталось еще пара моментов:
1. Напряжение конденсатора
2. Тип конденсатора.

С напряжением все просто, можно применить конденсатор на 400 Вольт, но надежнее на 630, хоть они и имеют больше размер.

С типом чуть сложнее. Для такого применения лучше использовать конденсаторы, которые изначально предназначены для такого использования, например К73-17, CL21, X2
На фото конденсатор CL21

А это более надежный вариант, не смотрите что на нем указано 280 Вольт, у него это значение переменного действующего напряжения и он будет работать надежнее, чем К73-17 или CL21.

Такие конденсаторы могут выглядеть и так

А вот теперь можно еще раз внимательно посмотреть, что надо для того, чтобы собрать такой «простой» блок питания и решить, нужен ли он.
В некоторых ситуациях да, он поможет, но он имеет кучу минусов, потому на мой взгляд лучше применить просто небольшой импульсный блок питания, который уже имеет стабилизированное выходное напряжение, гальваническую изоляцию и больший выходной ток.
Как пример таких блоков питания я могу дать ссылку на подробный обзор четырех вариантов, с тестами, схемами и осмотров.

Но можно поступить еще лучше. Сейчас получили распространение монолитные блоки питания. По сути кубик, в котором находится миниатюрный БП
Например HLK-PM01 производства Hi-link, стоимостью около двух долларов за штуку.

Или их китайский аналог TSP-05 производства Tenstar robot. Они немного дешевле, 1.93 доллара за штуку.
Практика показала, что качество у них сопоставимое.

Как я писал выше, они представляют из себя импульсный Бп в модульном исполнении. БП в пластмассовом корпусе залитый эпоксидной смолой.
Выпускаются на разные напряжения и способны поддерживать его на довольно стабильном уровне.

Внутренности поближе, на фото вариант от Hi-link

На этом вроде все. Надеюсь, что статья была полезна, постараюсь и в будущем находить интересные темы. Также интересны пожелания, что хотелось бы видеть в рубрике — Начинающим.

БЕСТРАНСФОРМАТОРНЫЕ БП НА 5, 9, 12, 24 В

Небольшие бестрансформаторные блоки питания часто используются для питания маломощных устройств от сети 220 В. Если ток потребляемый нагрузкой составляет порядка нескольких десятков миллиампер, можно легко преобразовать входное напряжение переменного тока в выходное постоянного, без необходимости использования громоздких и дорогих трансформаторов. Бестрансформаторные решения не только легче по весу и размерам, но и дешевле.

В зависимости от типа схемы бестрансформаторные источники питания делятся на две категории: емкостные и резистивные. Далее разберем характеристики каждой из этих схем. А также дадим практические советы о том, как выбрать мощность соответствующих электронных компонентов для этой схемы и какие меры следует предпринять для повышения безопасности такого источника питания.

Емкостный бестрансформаторный источник питания

Схема бестрансформаторного емкостного источника питания представлена на рисунке. Значения, указанные для компонентов, зависят от параметров схемы, формулы для расчета этих значений приведены. L и N представляют собой фазовую линию и ноль сетевого напряжения переменного тока соответственно, а Vout — это выходное напряжение от источника питания. Выходной ток обозначен как Iout.

Пусковой ток, способный повредить компоненты источника питания, ограничивается резистором R1 и реактивным сопротивлением конденсатора C1. Элемент D1 — стабилитрон, обеспечивающий стабилизацию опорного напряжения, а D2 — обычный кремниевый диод, задачей которого является выпрямление переменного напряжения. Напряжение на нагрузке остается постоянным, пока выходной ток Iout меньше или равен входному току Iin, значение которого можно рассчитать как:

Где VZ — напряжение стабилитрона, VRMS — среднеквадратичное значение входного переменного напряжения, а f — его частота. Минимальное значение Iin должно соответствовать потребляемой мощности нагрузки, а максимальное значение используется для выбора соответствующей номинальной мощности для каждого элемента. Выходное напряжение Vout можно рассчитать как:

Где VD — напряжение прямого смещения D2 — падение напряжения на диоде (обычно 0,7 В для кремниевого диода). Что касается R1, рекомендуется выбирать элемент с мощностью, по крайней мере, в 2 раза превышающей значение теоретической мощности рассеиваемой на R1 (PR1), которая определяется формулой:

Конденсатор C1, от которого происходит название схемы этого типа, следует выбирать с напряжением по крайней мере, в 2 раза превышающим напряжение сети переменного тока (400 В минимум). Диод D1 должен иметь мощность как минимум в 2 раза больше теоретического значения, определяемого по следующей формуле:

То же самое относится к мощности диода D2, где только вместо VZ теперь можно использовать постоянное значение падения напряжения, например 0,7 В для типичного кремниевого выпрямительного диода. В случае C2 обычно используется электролитический конденсатор с напряжением в 2 раза превышающим напряжение VZ.

Основными преимуществами емкостного решения перед БП на основе трансформатора являются уменьшенный размер, вес и стоимость. По сравнению с блоком резистивного типа, эта схема обеспечивает более высокий КПД. Недостатком является отсутствие гальванической развязки выходного напряжения от электросети и более высокая стоимость, чем ограничение по сопротивлению.

Резистивный бестрансформаторный источник питания

Принципиальная схема типичного бестрансформаторного резистивного источника питания показана на рисунке.

Опять же, выходное напряжение Vout остается постоянным пока ток Iout меньше или равен входному току Iin, с той лишь разницей что ограничение пускового тока теперь реализуется только резистором R1. Выходное напряжение Vout можно рассчитать по той же формуле, что и для емкостного источника питания, а входной ток Iin по следующей формуле:

Как и в предыдущем случае, компоненты должны быть выбраны со значением мощности, по крайней мере вдвое превышающим теоретическое значение, которое можно рассчитать по закону Ома (P = R х I ^ 2 для R1 и P = V х I для диодов D1 и D2). Электролитический конденсатор С2 следует выбирать как для емкостного исполнения.

Преимущество резистивного источника питания в том, что он меньше по размеру и весу по сравнению с трансформаторной схемой и является самым дешевым решением для электропитания. Но и в этом случае нет гальванической развязки от сети переменного тока, и кроме того, КПД ниже чем в емкостном решении.

Безопасность бестрансформаторных БП

Обе электросхемы имеют свои ограничения: они лишены какой-либо изоляции и защиты от сетевого напряжения, что является серьезной проблемой для безопасности. Но благодаря незначительным изменениям, можно адаптировать обе представленные схемы для реального использования и обеспечить соблюдение минимальных стандартов безопасности. Модификации включают:

  1. Добавление предохранителя для защиты от чрезмерного входного тока;
  2. Добавление варистора для защиты от переходных процессов;
  3. Резистор R2 (R3) подключен параллельно C1 (C3) для улучшения электромагнитной устойчивости;
  4. Разделение R1 на два резистора R1 и R2 для обеспечения лучшей защиты от скачков напряжения и предотвращения электрических дуг для резистивной цепи.

Для небольших нагрузок можно снизить напряжение с 220 В переменного тока до нескольких вольт (например 5, 9, 12 или 24), используя только токоограничивающий резистор, как показано на принципиальной схеме. КПД такой схемы чрезвычайно низок (1%), поскольку большая часть энергии теряется в виде тепла через резистор R1. Этот компонент действительно должен проделать большую работу чтобы снизить напряжение с 220 В до 12 В.

В этом примере этот линейный элемент рассеивает в среднем 22 Вт. Следовательно, он должен быть рассчитан не менее чем на 50 Вт. Его мощность рассеяния можно определить по формуле:

Переходные напряжения (за одну секунду) со значениями используемых компонентов показаны на графиках.

График верхний показывает, сколько времени требуется чтобы выходное напряжение достигло 12 В. Это время зависит от постоянной времени схемы, определяемой конденсатором C1. Тут время зарядки конденсатора следующее:

  • C1 = 100 мкФ, T = 25 мс
  • C1 = 470 мкФ, T = 130 мс
  • C1 = 1000 мкФ, T = 290 мс
  • C1 = 4700 мкФ, T = 1,4 сек
  • C1 = 10000 мкФ, T = 3 сек

При постоянном сопротивлении нагрузки пульсации выходного напряжения зависят от емкости конденсатора С1. Чем больше емкость конденсатора, тем меньше пульсации выходного напряжения. При использовании указанных выше конденсаторов уровень пульсаций, измеренный как размах напряжения сигнала, выглядит следующим образом:

  • C1 = 100 мкФ, пульсации = 1,2 Vpp
  • C1 = 470 мкФ, пульсации = 261,7 mVpp
  • C1 = 1000 мкФ, пульсации = 121,5 mVpp
  • C1 = 4700 мкФ, пульсации = 25,3 mVpp
  • C1 = 10 000 мкФ, пульсации = 11,9 mVpp

Но что более важно чем пульсация, на рисунке видно что выходное напряжение от источника питания не достигает желаемого напряжения 12 В, а только около 11,3 В.

Оказывается даже без нагрузки при подключении выходное напряжение всегда ниже 12 В. Это падение напряжения вызвано диодом D2. Помещенный в это место диод Шоттки мог бы уменьшить его, но не до нуля.

Конденсатор улучшает ситуацию

Как видно на схеме, добавление полиэфирного конденсатора последовательно с линией питания повышает эффективность. В этой конфигурации КПД уже составляет до 20%.

Поскольку максимальное напряжение на конденсаторе превышает 320 В, необходимо выбрать компонент, способный работать при напряжении не менее 600 В, как показано на рисунке.

В этой конфигурации R1 рассеивает только 0,5 Вт, но всегда лучше использовать его с номинальной мощностью не менее 2 Вт. Конденсатор C2 действует как резистор и имеет некоторую емкость при 50 Гц. Более конкретно емкость конденсатора на частоте f определяется по следующей формуле:

Из приведенной формулы конденсатор C2 имеет реактивное сопротивление 6772 Ом при 50 Гц, но, в отличие от резистора он не выделяет тепла. Выходное напряжение схемы также составляет 12 В за вычетом падения напряжения на диоде D1.

Рекомендации по проектированию БП

Когда цепь отключена, конденсатор C2 может оставаться заряженным в течение длительного времени. Рекомендуется подключать резистор с высоким сопротивлением параллельно этому элементу, как показано на рисунке. Этот резистор, например сопротивлением 470 кОм, не влияет на нормальную работу схемы. В стандартных условиях он рассеивает около 100 мВт тепла. Полный разряд конденсатора С2 происходит примерно за 1 секунду, но уже через 0,4 секунды значение напряжения на этом элементе станет не опасным для человека.

Следует отметить, что R2 должен быть рассчитан на работу при таком высоком напряжении. Поэтому обычно используются два или более обычных резистора мощностью 1/4 Вт, соединенных последовательно (для увеличения максимального напряжения пробоя).

Что касается последовательного резистора с токоограничивающим конденсатором, резистор нельзя полностью заменить перемычкой, потому что при подключении блока питания к сети можно словить вершину синусоиды и реактивное сопротивление конденсатора будет порядка не килоом, а единиц Ом. Резистор — это защита от такой «удачи». В свою очередь, большой резистор означает большие потери мощности и даже более низкий КПД.

Вот относительно мощный блок питания, сделанный для тока 150 мА 24 В. Помимо токоограничивающих элементов и разрядного резистора (C 2,5 uF, R 51R и 1M), на плате есть диодный мост, стабилитрон 24V и конденсатор фильтра 100 uF.

В общем самые большие преимущества бестрансформаторного источника питания можно увидеть, когда токовые требования составляют до 30 мА, тогда конечно вес, количество элементов, простота эксплуатации сделают разумным выбор такой схемы. Но всегда помните про отсутствие гальванической развязки с сетью 220 В!