Как определить точность прибора имеющего шкалу?

V. Точность измерительных приборов.

Точность измерительного прибора – это его свойство, характеризующее степень приближения показаний данного измерительного прибора к действительным значениям измеряемой величины и определяется той наименьшей величиной, которую с помощью этого прибора можно определить надёжно.

Точность прибора зависит от цены наименьшего деления его шкалы и указывается или на самом приборе, или в заводской инструкции (паспорте). Заметим, что точность измерений обратно пропорциональна относительной погрешности измерений Е: = .

Погрешность электроизмерительных приборов определяется классом точности (или приведенной погрешностью Епр), который указывается на лицевой стороне прибора соответствующей цифрой в кружке. Классом точности прибора К называют выраженное в процентах отношение абсолютной погрешности к предельному (номинальному) значению хпр измеряемой величины, т. е. к наибольшему её значению, которое может быть измерено по шкале прибора (предел измерения):

.

Зная класс точности и предел измерения прибора, можно рассчитать его абсолютную погрешность:

.

Эта погрешность одинакова для любого измерения сделанного с помощью данного прибора. Классов точности семь: 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Приборы первых трех классов точности (0,1; 0,2; 0,5) называются прецизионными и используются при точных научных измерениях, приборы остальных классов точности называются техническими. Приборы без указания класса точности считаются внеклассными.

Пример. Сила тока измеряется в цепи амперметром, класс точности которого К=0,5, а шкала имеет предел измерения Iпр=10 А. Находим абсолютную погрешность амперметра:

Отсюда следует, что амперметр позволяет измерять силу тока с точностью не более 0,05 А, и поэтому нецелесообразно делать отсчёт по шкале прибора с большей точностью.

Допустим, что с помощью данного амперметра были измерены три значения силы тока: I1=2 А; I2=5 А; I3=8 А. Находим для каждого случая относительную погрешность: ; .

Из этого примера следует, что в третьем случае относительная погрешность самая маленькая, то есть чем больше величина отсчёта по прибору, тем меньше относительная погрешность измерения. Вот почему для оптимального использования приборов рекомендуется их подбирать так, чтобы значение измеряемой величины находилось в конце шкалы прибора. В этом случае относительная погрешность приближается к классу точности прибора. Если точность прибора неизвестна, то абсолютная погрешность принимается равной половине цены наименьшего деления (линейка, термометр, секундомер). Для штангенциркуля и микрометра – точность их нониусов (0,1 мм, 0,01 мм).

Примечания: 1) При отсчетах следует следить за тем, чтобы луч зрения был перпендикулярен шкале. Для устранения так называемой ошибки параллакса на многих приборах устанавливается зеркало («зеркальные приборы»). Глаз экспериментатора расположен правильно, если стрелка прибора закрывает свое изображение в зеркале.

2) При косвенных измерениях (например, определение объема цилиндра по его диаметру и высоте) следует определять все измеряемые вершины с приблизительно одинаковой относительной точностью.

3) При обработке результатов измерений следует помнить, что точность вычислений должна быть согласована с точностью самих измерений. Вычисления, произведенные с большим, чем это необходимо, числом десятичных знаков, приводят к большому объему ненужной работы. Например, если хотя бы одна из величин в каком-либо выражении определена с точностью до двух значащих цифр, то нет смысла вычислять результат с точностью, большей двух значащих цифр. В тоже время в промежуточных расчетах рекомендуется сохранять одну лишнюю цифру, которая в дальнейшем – при записи окончательного результата – будет отброшена. В теории погрешностей из существующих правил округления имеется следующее исключение: при округлении погрешностей последняя сохраняемая цифра увеличивается на единицу, если старшая отбрасываемая цифра 3 или больше 3.

4) Примеры окончательной записи результатов измерений:

Погрешности измерений, представление результатов эксперимента

п.1. Шкала измерительного прибора

Примеры шкал различных приборов:


Манометр – прибор для измерения давления, круговая шкала

Вольтметр – прибор для измерения напряжения, дуговая шкала

Индикатор громкости звука, линейная шкала

п.2. Цена деления

Пример определения цены деления:

п.3. Виды измерений

Прямое измерение

Физическую величину измеряют с помощью прибора

Измерение длины бруска линейкой

Косвенное измерение

Физическую величину рассчитывают по формуле, куда подставляют значения величин, полученных с помощью прямых измерений

Определение площади столешницы при измеренной длине и ширине

п.4. Погрешность измерений, абсолютная и относительная погрешность

Инструментальная погрешность

Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)

Погрешность метода

Определяется несовершенством методов и допущениями в методике.

Погрешность теории (модели)

Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.

Погрешность оператора

Определяется субъективным фактором, ошибками экспериментатора.

Примеры значащих цифр:
0,403 – три значащих цифры, величина определена с точностью до тысячных.
40,3 – три значащих цифры, величина определена с точностью до десятых.
40,300 – пять значащих цифр, величина определена с точностью до тысячных.

В простейших измерениях инструментальная погрешность прибора является основной.
В таких случаях физическую величину измеряют один раз, полученное значение берут в качестве истинного, а абсолютную погрешность считают равной инструментальной погрешности прибора.
Примеры измерений с абсолютной погрешностью равной инструментальной:

  • определение длины с помощью линейки или мерной ленты;
  • определение объема с помощью мензурки.

Пример получения результатов прямых измерений с помощью линейки:

Измерим длину бруска линейкой, у которой пронумерованы сантиметры и есть только одно деление между пронумерованными делениями.
Цена деления такой линейки: begin triangle=frac= frac<1 text<см>><1+1>=0,5 text <см>end Инструментальная погрешность: begin d=frac<2>=frac<0,5><2>=0,25 text <см>end Истинное значение: (L_0=4 text<см>)
Результат измерений: $$ L=L_0pm d=(4,00pm 0,25) text <см>$$ Относительная погрешность: $$ delta=frac<0,25><4,00>cdot 100text<%>=6,25text<%>approx 6,3text <%>$$
Теперь возьмем линейку с n=9 мелкими делениями между пронумерованными делениями.
Цена деления такой линейки: begin triangle=frac= frac<1 text<см>><9+1>=0,1 text <см>end Инструментальная погрешность: begin d=frac<2>=frac<0,1><2>=0,05 text <см>end Истинное значение: (L_0=4,15 text<см>)
Результат измерений: $$ L=L_0pm d=(4,15pm 0,05) text <см>$$ Относительная погрешность: $$ delta=frac<0,05><4,15>cdot 100text<%>approx 1,2text <%>$$

Второе измерение точнее, т.к. его относительная погрешность меньше.

п.5. Абсолютная погрешность серии измерений

Измерение длины с помощью линейки (или объема с помощью мензурки) являются теми редкими случаями, когда для определения истинного значения достаточно одного измерения, а абсолютная погрешность сразу берется равной инструментальной погрешности, т.е. половине цены деления линейки (или мензурки).

Гораздо чаще погрешность метода или погрешность оператора оказываются заметно больше инструментальной погрешности. В таких случаях значение измеренной физической величины каждый раз немного меняется, и для оценки истинного значения и абсолютной погрешности нужна серия измерений и вычисление средних значений.

Пример расчета истинного значения и погрешности для серии прямых измерений:
Пусть при измерении массы шарика с помощью рычажных весов мы получили в трех опытах следующие значения: 99,8 г; 101,2 г; 100,3 г.
Инструментальная погрешность весов d = 0,05 г.
Найдем истинное значение массы и абсолютную погрешность.

Составим расчетную таблицу:

№ опыта 1 2 3 Сумма
Масса, г 99,8 101,2 100,3 301,3
Абсолютное отклонение, г 0,6 0,8 0,1 1,5

Сначала находим среднее значение всех измерений: begin m_0=frac<99,8+101,2+100,3><3>=frac<301,3><3>approx 100,4 text <г>end Это среднее значение принимаем за истинное значение массы.
Затем считаем абсолютное отклонение каждого опыта как модуль разности (m_0) и измерения. begin triangle_1=|100,4-99,8|=0,6\ triangle_2=|100,4-101,2|=0,8\ triangle_3=|100,4-100,3|=0,1 end Находим среднее абсолютное отклонение: begin triangle_=frac<0,6+0,8+0,1><3>=frac<1,5><3>=0,5 text <(г)>end Мы видим, что полученное значение (triangle_) больше инструментальной погрешности d.
Поэтому абсолютная погрешность измерения массы: begin triangle m=maxleft; dright>=maxleft<0,5; 0,05right> text <(г)>end Записываем результат: begin m=m_0pmtriangle m\ m=(100,4pm 0,5) text <(г)>end Относительная погрешность (с двумя значащими цифрами): begin delta_m=frac<0,5><100,4>cdot 100text<%>approx 0,050text <%>end

п.6. Представление результатов эксперимента

Как найти результат прямого измерения, мы рассмотрели выше.
Результат косвенного измерения зависит от действий, которые производятся при подстановке в формулу величин, полученных с помощью прямых измерений.

Вывод этих формул достаточно сложен, но если интересно, его можно найти в Главе 7 справочника по алгебре для 8 класса.

п.7. Задачи

Задача 1. Определите цену деления и объем налитой жидкости для каждой из мензурок. В каком случае измерение наиболее точно; наименее точно?

Составим таблицу для расчета цены деления:

№ мензурки a, мл b, мл n (triangle=frac), мл
1 20 40 4 (frac<40-20><4+1>=4)
2 100 200 4 (frac<200-100><4+1>=20)
3 15 30 4 (frac<30-15><4+1>=3)
4 200 400 4 (frac<400-200><4+1>=40)

Инструментальная точность мензурки равна половине цены деления.
Принимаем инструментальную точность за абсолютную погрешность и измеренное значение объема за истинное.
Составим таблицу для расчета относительной погрешности (оставляем две значащих цифры и округляем с избытком):

№ мензурки Объем (V_0), мл Абсолютная погрешность
(triangle V=frac<2>), мл
Относительная погрешность
(delta_V=fraccdot 100text<%>)
1 68 2 3,0%
2 280 10 3,6%
3 27 1,5 5,6%
4 480 20 4,2%

Наиболее точное измерение в 1-й мензурке, наименее точное – в 3-й мензурке.

Ответ:
Цена деления 4; 20; 3; 40 мл
Объем 68; 280; 27; 480 мл
Самое точное – 1-я мензурка; самое неточное – 3-я мензурка

Задача 2. В двух научных работах указаны два значения измерений одной и той же величины: $$ x_1=(4,0pm 0,1) text<м>, x_2=(4,0pm 0,03) text <м>$$ Какое из этих измерений точней и почему?

Мерой точности является относительная погрешность измерений. Получаем: begin delta_1=frac<0,1><4,0>cdot 100text<%>=2,5text<%>\ delta_2=frac<0,03><4,0>cdot 100text<%>=0,75text <%>end Относительная погрешность второго измерения меньше. Значит, второе измерение точней.
Ответ: (delta_2lt delta_1), второе измерение точней.

Задача 3. Две машины движутся навстречу друг другу со скоростями 54 км/ч и 72 км/ч.
Цена деления спидометра первой машины 10 км/ч, второй машины – 1 км/ч.
Найдите скорость их сближения, абсолютную и относительную погрешность этой величины.

Абсолютная погрешность скорости каждой машины равна инструментальной, т.е. половине деления спидометра: $$ triangle v_1=frac<10><2>=5 (text<км/ч>), triangle v_2=frac<1><2>=0,5 (text<км/ч>) $$ Показания каждого из спидометров: $$ v_1=(54pm 5) text<км/ч>, v_2=(72pm 0,5) text <км/ч>$$ Скорость сближения равна сумме скоростей: $$ v_0=v_<10>+v_<20>, v_0=54+72=125 text <км/ч>$$ Для суммы абсолютная погрешность равна сумме абсолютных погрешностей слагаемых. $$ triangle v=triangle v_1+triangle v_2, triangle v=5+0,5=5,5 text <км/ч>$$ Скорость сближения с учетом погрешности равна: $$ v=(126,0pm 5,5) text <км/ч>$$ Относительная погрешность: $$ delta_v=frac<5,5><126,0>cdot 100text<%>approx 4,4text <%>$$ Ответ: (v=(126,0pm 5,5) text<км/ч>, delta_vapprox 4,4text<%>)

Задача 4. Измеренная длина столешницы равна 90,2 см, ширина 60,1 см. Измерения проводились с помощью линейки с ценой деления 0,1 см. Найдите площадь столешницы, абсолютную и относительную погрешность этой величины.

Инструментальная погрешность линейки (d=frac<0,1><2>=0,05 text<см>)
Результаты прямых измерений длины и ширины: $$ a=(90,20pm 0,05) text<см>, b=(60,10pm 0,05) text <см>$$ Относительные погрешности (не забываем про правила округления): begin delta_1=frac<0,05><90,20>cdot 100text<%>approx 0,0554text<%>approx uparrow 0,056text<%>\ delta_2=frac<0,05><60,10>cdot 100text<%>approx 0,0832text<%>approx uparrow 0,084text <%>end Площадь столешницы: $$ S=ab, S=90,2cdot 60,1 = 5421,01 text<см>^2 $$ Для произведения относительная погрешность равна сумме относительных погрешностей слагаемых: $$ delta_S=delta_a+delta_b=0,056text<%>+0,084text<%>=0,140text<%>=0,14text <%>$$ Абсолютная погрешность: begin triangle S=Scdot delta_S=5421,01cdot 0,0014=7,59approx 7,6 text<см>^2\ S=(5421,0pm 7,6) text<см>^2 end Ответ: (S=(5421,0pm 7,6) text<см>^2, delta_Sapprox 0,14text<%>)

Что нужно знать о классе точности измерительного прибора?

Измерительные приборы: вольтметры, амперметры, токовые клещи, осциллографы и другие — это устройства, предназначенные для определения искомых величин в заданном диапазоне, каждый из них имеет свою точность, причем устройства, измеряющие одну и ту же величину, в зависимости от модели, могут отличаться по точности и классу.

В каких-то ситуациях достаточно просто определить значение, например, вольтаж батарейки, а в других необходимо выполнить многократное повторение измерений высокоточными приборами для получения максимально достоверного результата, так в чем отличие таких измерительных устройств, что означает класс точности, сколько их бывает, как его определить и многое другое читайте далее в нашей статье.

Что такое класс точности

Определение: «Класс точности измерения — это общая характеристика точности средства измерения, определяемая пределами допустимых основных и дополнительных погрешностей, а также другими факторами, влияющими на нее».

Сам по себе класс не является постоянной величиной измерения, потому что само измерение зачастую зависит от множества переменных: места измерения, температуры, влажности и других факторов, класс позволяет определить лишь только в каком диапазоне относительных погрешностей работает данный прибор.

Чтобы заранее оценить погрешность, которую измерит устройство, также могут использоваться нормативные справочные значения.

Относительная погрешность — это отношение абсолютной погрешности к модулю действительного приближенного показателя полученного значения, измеряется в %.

Абсолютная погрешность рассчитывается следующим образом:

∆=±a или ∆=(a+bx)

x – число делений, нормирующее значение величины

a, b – положительные числа, не зависящие от х

Абсолютная и приведенная погрешность рассчитывается по следующим формулам, см. таблицу ниже

Какие классы точности бывают, как обозначаются

Как мы уже успели выяснить, интервал погрешности определяется классом точности. Данная величина рассчитывается, устанавливается ГОСТом и техническими условиями. В зависимости от заданной погрешность, бывает: абсолютная, приведенная, относительная, см. таблицу ниже

Согласно ГОСТ 8.401-80 в системе СИ классы точности обычно помечается латинской буквой, часто с добавлением индекса, отмеченного цифрой. Чем меньше погрешность, соответственно, меньше цифра и буквенное значение выше по алфавиту, тем более высокая точность.

Класс точности обозначается на корпусе устройства в виде числа обведенного в кружок, обозначает диапазон погрешностей измерений в процентах. Например, цифра означает относительную погрешность ±2%. Если рядом со знаком присутствует значок в виде галочки, это значит, что длина шкалы используется в качестве вспомогательного определения погрешности.

  • 0,1, 0,2 – считается самым высоким классом
  • 0,5, 1 – чаще применяется для устройств средней ценовой категории, например, бытовых
  • 1,5, 2,5 – используется для приборов измерения с низкой точностью или индикаторов, аналоговых датчиков

Каким ГОСТом регламентируется точность приборов?

ГОСТ 8.401-80 «Классы точности средств измерений» общие требования. Нормативным документом устанавливаются общие положения классификации точностей измерительных приборов.

Как определить класс точности электроизмерительного прибора, формулы расчета

Чтобы определить класс точности, необходимо взглянуть на его корпус или инструкцию пользователя, в ней вы можете увидеть цифру, обведенную в круг, например, ① это означает, что ваш прибор измеряет величину с относительной погрешностью ±1%.

Но что делать если известна относительная погрешность и необходимо рассчитать класс точности, например, амперметра, вольтметра и т.д. Рассмотрим на примере амперметра: известна ∆x=базовая (абсолютная) погрешность 0,025 (см. в инструкции), количество делений х=12

Находим относительную погрешность:

Y= 100×0,025/12=0,208 или 2,08%

(вывод: класс точности – 2,5).

Следует отметить, что погрешность неравномерна на всем диапазоне шкалы, измеряя малую величину вы можете получить наибольшую неточность и с увеличением искомой величины она уменьшается, для примера рассмотрим следующий вариант:

Вольтметр с классом p=±2, верхний предел показаний прибора Xn=80В, число делений x=12

Предел абсолютной допустимой погрешности:

Относительная погрешность одного деления:


Если вам необходимо выполнить более подробный расчет, смотрите ГОСТ 8.401-80 п.3.2.6.

Поверка приборов, для чего она нужна

Все измерительные приборы измеряют с некой погрешностью, класс точности говорит лишь о том, в каком диапазоне она находится. Бывают случаи, когда диапазон погрешности незаметно увеличивается, и мы начинаем замечать, что измеритель «по-простому» начинает врать. В таких случаях помогает поверка.

Это процесс измерения эталонной величины в идеальных условиях прибором, обычно проводится метрологической службой или в метрологическом отделе предприятия производителя.

Существует первичная и периодическая, первичную проверку проводят после выпуска изделия и выдают сертификат, периодическую проводят не реже чем раз в год, для ответственных приборов чаще.

Поэтому если вы сомневаетесь в правильности работы устройства, вам следует провести его поверку в ближайшей метрологической службе, потому что измеритель может врать как в меньшую, так и в большую сторону.

Как легко проверить потребление электроэнергии в квартире, можете узнать в нашей статье.

Видео на тему относительная погрешность прибора

Заключение

Класс точности является важным показателем для каждого прибора, при выборе всегда обращайте внимание на него. Если вам нужен, например, электрический счетчик, важно чтобы он измерял потребление энергии с максимальной точностью, благодаря этому за весь период эксплуатации, вы сможете сэкономить приличную сумму средств.

Но, а если вам необходимо просто периодически проверять напряжение в розетке, для этого не стоит переплачивать за дорогостоящую покупку.

Рекомендуем к просмотру:

  • Провод пв 3: технические характеристики, что…
  • Вопрос: в доме нагревается провод от розетки, что делать?
  • Электромагнитное реле, что это такое, какой принцип…
  • Что такое асинхронный двигатель
  • Что важно знать о беспроводной зарядке простыми…
  • Вопрос: Автоматические выключатели на входе в…

Погрешность. Классы точности средств измерений.

Позволю себе вначале небольшое отступление. Такие понятия как погрешность, класс точности довольно подробно описываются в нормативной документации ГОСТ 8.009-84 «Нормируемые метрологические характеристики средств измерений», ГОСТ 8.401-80 «Классы точности средств измерений. Общие требования» и им подобных. Но открывая эти документы сразу возникает чувство тоски… Настолько сухо и непонятно простому начинающему «киповцу», объяснены эти понятия. Давайте же пока откинем такие вычурные и непонятные нам определения, как «среднее квадратическое отклонение случайной составляющей погрешности» или «нормализованная автокорреляционная функция» или «характеристика случайной составляющей погрешности от гистерезиса — вариация Н выходного сигнала (показания) средства измерений» и т. п. Попробуем разобраться, а затем свести в одну небольшую, но понятную табличку, что же такое «погрешность» и какая она бывает.

Погрешности измерений – отклонения результатов измерения от истинного значения измеряемой величины. Погрешности неизбежны, выявить истинное значение невозможно.

По числовой форме представления подразделяются:

  1. Абсолютная погрешность: Δ = Xд — Xизм, выражается в единицах измеряемой величины, например в килограммах (кг), при измерении массы.
    где Xд – действительное значение измеряемой величины, принимаются обычно показания эталона, образцового средства измерений;
    Xизм – измеренное значение.
  2. Относительная погрешность: δ = (Δ ⁄ Xд) · 100, выражается в % от действительного значения измеренной величины.
  3. Приведённая погрешность: γ = (Δ ⁄ Xн) · 100, выражается в % от нормирующего значения.
    где Xн – нормирующее значение, выраженное в тех же единицах, что и Δ, обычно принимается диапазон измерения СИ (шкала).

По характеру проявления:

  • систематические (могут быть исключены из результатов);
  • случайные;
  • грубые или промахи (как правило не включаются в результаты измерений).

В зависимости от эксплуатации приборов:

  • основная – это погрешность средства измерения при нормальных условиях; (ГОСТ 8.395-80)
  • дополнительная погрешность – это составляющая погрешности средства измерения, дополнительно возникающая из-за отклонения какой-либо из влияющих величин от нормативного значения или выход за пределы нормальной области значений. Например: измерение избыточного давления в рабочих условиях цеха, при температуре окружающего воздуха 40 ºС, относительной влажности воздуха 18% и атмосферном давлении 735 мм рт. ст., что не соответствует номинальным значениям влияющих величин при проведении поверки.
Наимено вание погреш ности Формула Форма выражения, записи Обозначение класса точности
В докумен тации На сред стве изме рений
Абсолют ная Δ = Xд — Xизм Δ = ±50 мг
Примеры:
Номинальная масса гири 1 кг ±50 мг
Диапазон измерения весов среднего III класса точности от 20 г до 15 кг ±10 г
Класс точности: М1
Класс точности: средний III
Примечание:
на многие виды измерений есть свои НД по выражению погрешностей, здесь для примера взято для гирь и весов.
М1
Относи тельная δ = (Δ ⁄ Xд) · 100 δ = ±0,5
Пример:
Измеренное значение изб. давления с отн. погр.
1 бар ±0,5%
т.е. 1 бар ±5 мбар (абс. погр.)
Класс точности 0,5
Приве дённая:
при равно мерной шкале
γ = (Δ ⁄ Xн) · 100 γ = ±0,5
Пример:
Измеренное значение на датчике изб. давления, при шкале от 0 до 10 бар
1 бар (= 0,5 % от 10 бар)
т.е. 1 бар ±50 мбар (абс. погр.)
Класс точности весов 0,5 0,5
с сущес твенно неравно мерной шкалой γ = ±0,5
Прописывается в норм .док-ии на СИ для каждого диапазона измерения (шкалы) своё нормирующее значение
Класс точности 0,5

Как определить погрешность комплекта приборов, в который входит первичный преобразователь, вторичный преобразователь (усилитель) и вторичный прибор. У каждого из элементов этого комплекта есть своя абсолютная, относительная или приведённая погрешность. И чтобы оценить, общую погрешность измерения, необходимо все погрешности привести к одному виду, а дальше посчитать по формуле:

Дальше будет интересно, наверное, только метрологам и то, только начинающим. Теперь совсем немного вспомним о средних квадратических отклонениях (СКО). Зачем они нужны? Так как истинное значение выявить невозможно, то необходимо хотя бы наиболее точно приблизиться к нему или определить доверительный интервал, в котором истинное значение находится с большой долей вероятности. Для этого применяют различные статистические методы, приведём формулы наиболее распространённого. Например, Вы провели n количество измерений чего угодно и Вам необходимо определить доверительный интервал:

  1. Определяем среднее арифметическое отклонение:

    где n – количество отклонений
  2. Определяем среднее квадратическое отклонение (СКО) среднего арифметического:
  3. Рассчитываем случайную составляющую погрешности:

    где t – коэффициент Стьюдента, зависящий от числа степеней свободы
    Таблица 1.
    α =0,68 α =0,95 α =0,99
    n tα,n n tα,n n tα,n
    2 2,0 2 12,7 2 63,7
    3 1,3 3 4,3 3 9,9
    4 1,3 4 3,2 4 5,8
    5 1,2 5 2,8 5 4,6
    6 1,2 6 2,6 6 4,0
    7 1,1 7 2,4 7 3,7
    8 1,1 8 2,4 8 3,5
    9 1,1 9 2,3 9 3,4
    10 1,1 10 2,3 10 3,3
    15 1,1 15 2,1 15 3,0
    20 1,1 20 2,1 20 2,9
    30 1,1 30 2,0 30 2,8
    100 1,0 100 2,0 100 2,6
  4. Определяем СКО систематической составляющей погрешности:
  5. Рассчитываем суммарное СКО:
  6. Определяем коэффициент, зависящий от соотношения случайной и систематической составляющей погрешности:
  7. Проводим оценку доверительных границ погрешности:

В последнее время всё чаще на слуху термин «неопределённость». Медленно, но верно и настойчиво его внедряют в отечественную метрологию. Это дань интеграции нашей экономики во всемирную, естественно необходимо адаптировать нормативную документацию к международным стандартам. Не буду тут «переливать из пустого в порожнее», это хорошо сделано в различных нормативных документах. Чисто моё мнение, «расширенная неопределённость измерений» = основная погрешность + дополнительная, которая учитывает все влияющие факторы.

Класс точности

Во время лабораторных измерений требуется знать точность измерительных средств, которые в свою очередь обладают определенными характеристиками и различаются по устройству. Каждое из средств измерения (СИ) имеют определенные неточности, которые делится на основные и дополнительные. Зачастую возникают ситуации, когда нет возможности или просто не требуется производить подробный расчет. Каждому средству измерения присвоен определенный класс точности, зная который, можно выяснить его диапазон отклонений.

Вовремя выяснить ошибки измерительного средства помогут нормированные величины погрешностей. Под этим определением стоит понимать предельные, для измерительного средства показатели. Они могут быть разными по величине и зависеть от разных условий, но пренебрегать ими не стоит ни в коем случае, ведь это может привести к серьезной ошибке в дальнейшем. Нормированные значения должны быть меньше чем покажет прибор. Границы допустимых величин ошибок и необходимые коэффициенты вносятся в паспорт каждого замеряющего размеры устройства. Узнать подробные значения нормирования для любого прибора можно воспользовавшись соответствующим ГОСТом.

Класс точности измерительного прибора

Обобщающая характеристика, которая определяется пределами погрешностей (как основных, так и дополнительных), а также другими влияющими на точные замеры свойствами и показатели которых стандартизированы, называется класс точности измерительного аппарата. Класс точности средств измерений дает информацию о возможной ошибке, но одновременно с этим не является показателем точности данного СИ.

Средство измерения – это такое устройство, которое имеет нормированные метрологические характеристики и позволяет делать замеры определенных величин. По своему назначению они бывают примерные и рабочие. Первые используются для контроля вторых или примерных, имеющих меньший ранг квалификации. Рабочие используются в различных отраслях. К ним относятся измерительные:

  • приборы;
  • преобразователи;
  • установки;
  • системы;
  • принадлежности;
  • меры.

На каждом средстве для измерений имеется шкала, на которой указываются классы точности этих средств измерений. Они указываются в виде чисел и обозначают процент погрешности. Для тех, кто не знает, как определить класс точности, следует знать, что они давно стандартизованы и есть определенный ряд значений. Например, на устройстве может быть одна из следующих цифр: 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001. Если это число находится в круге, то это погрешность чувствительности. Обычно ее указывают для масштабных преобразователей, таких как:

  • делители напряжения;
  • трансформаторы тока и напряжения;
  • шунты.

Обозначение класса точности

Обязательно указывается граница диапазона работы этого прибора, в пределах которой значение класса точности будет верно.

Те измерительные устройства, которые имеют рядом со шкалой цифры: 0,05; 0,1; 0,2; 0,5, именуются как прецизионные. Сфера их применения – это точные и особо точные замеры в лабораторных условиях. Приборы с маркировкой 1,0; 1,5; 2,5 или 4,0 называются технические и исходя из названия применяются в технических устройствах, станках, установках.

Возможен вариант, что на шкале такого аппарата не будет маркировки. В такой ситуации погрешность приведенную принято считать более 4%.

Если значение класса точности устройства не подчеркнуто снизу прямой линией, то это говорит о том, что такой прибор нормируется приведенной погрешностью нуля.

Грузопоршневой манометр, класс точности 0,05

Если шкала отображает положительные и отрицательные величины и отметка нуля находится посередине такой шкалы, то не стоит думать, что погрешность во всем диапазоне будет неизменной. Она будет меняться в зависимости от величины, которую измеряет устройство.

Если замеряющий агрегат имеет шкалу, на которой деления отображены неравномерно, то класс точности для такого устройства указывают в долях от длины шкалы.

Возможны варианты измерительных аппаратов со значениями шкалы в виде дробей. Числитель такой дроби укажет величину в конце шкалы, а число в знаменателе при нуле.

Нормирование

Классы точности средств измерений сообщают нам информацию о точности таких средств, но одновременно с этим он не показывает точность измерения, выполненного с помощью этого измерительного устройства. Для того, чтобы выявить заблаговременно ошибку показаний прибора, которую он укажет при измерении люди нормируют погрешности. Для этого пользуются уже известными нормированными значениями.й

Нормирование осуществляется по:

  • абсолютной;
  • относительной;
  • приведенной.

Формулы расчета абсолютной погрешности по ГОСТ 8.401

Каждый прибор из конкретной группы приспособлений для замера размеров имеет определенное значение неточностей. Оно может незначительно отличаться от установленного нормированного показателя, но не превышать общие показатели. Каждый такой агрегат имеет паспорт, в который записываются минимальные и максимальные величины ошибок, а также коэффициенты, оказывающие влияние в определенных ситуациях.

Все способы нормирования СИ и обозначения их классов точности устанавливаются в соответствующих ГОСТах.

Виды маркирования

Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.

Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.

Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.

Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.

Пределы

Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.

Базовый способ определения погрешности

При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.

Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.

Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.

Класс точности 2,5

Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.

Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.

Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.

Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.

Пример расчета погрешности

Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.

Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.

Классы точности болтов

Болты и другие крепежные изделия изготавливают нескольких классов:

  • грубой (С);
  • нормальной (В);
  • повышенной (А).

Каждый из них имеет свои допуски измеряемой величины, отличные от остальных и применяется в различных сферах.

Крепеж С используют в отверстиях с диаметром немногим больше диаметра болта (до 3мм). Болты без труда устанавливаются, не отнимая много времени на работу. Из минусов стоит отметить то, что при физическом воздействии на такой крепеж, болтовое соединение может сместиться на несколько миллиметров.

Крепеж В подразумевает использование болтов, диаметр которых меньше отверстия в пределах 1-1,5 мм. Это позволяет конструкции меньше подвергаться смещениям и деформациям, но повышаются требования к изготовлению отверстий в креплениях.

Гайки шестигранные класса точности В

Крепеж А создается по проекту. Диаметр болта такого типа, меньше диаметра отверстия максимум на 0,3 мм и имеет допуск только со знаком минус. Это делает крепеж неподвижным, не позволяет происходить смещению узлов. Изготовление болтов А-класса стоит дороже и не всегда используется в производстве.

Класс точности присутствует в описании всех измерительных приборов и является одной из самых важных характеристик. Чем выше его значение, тем более дорогостоящий будет прибор, но в то же время он сможет предоставить более точную информацию. Выбор стоить делать исходя из сложившейся ситуации и целей в которых будет использоваться такое средство. Важно понимать, что в некоторых ситуациях экономически выгодно будет приобрести дорогостоящее сверхточное оборудование, чтобы в дальнейшем сберечь деньги.

Что такое класс точности амперметра

Ни один прибор в мире не является точным. Величина, которую он измеряет, всегда будет отличаться от истины на ту величину, которую еще называют его погрешностью. Данная погрешность и будет определять класс точности амперметра. Задачей всех производителей измерительной техники, заключается в том, чтобы эта погрешность была, как можно ниже и стремилась к нулю.

Погрешность амперметра устанавливается в результате поверки и сравнении показаний замеров одних и тех же величин с эталонным или образцовым прибором, имеющий более высокий класс точности. При этом значение, полученное на образцовом приборе, считаются действительными.

Что такое амперметр и какие величины он измеряет

Амперметр — измерительный прибор, который служит для измерения силы тока [І] в электроцепях. Единицей [І] по системе СИ является ампер [А]. Электрические цепи могут проводить ток разной силы, поэтому градуируют приборную шкалу амперметра с различной градацией от микроампера равного 1 мкА = 1×0 -6 ампер до килоампера равного: 1 кА = 1 000 ампер.

Важно! В электроцепь амперметр включают последовательно, а для повышения границы измерений, используют специальные устройства: трансформаторы, шунты м магнитные усилители.

Поскольку ток в цепи напрямую зависит от величины сопротивления [R] элементов электроцепи, то собственное сопротивление прибора [Rа] должно быть предельно низким, стремится к нулю. Это приведет к уменьшению влияния устройства в процессе замеров тока в цепи, тем самым будет повышена точность измерения.

Разновидности амперметров

Они могут быть электромеханическими или аналоговыми, цифровыми или электронными. Базовый набор, как правило, состоит из детектора, передающего устройства и индикатора, самописца или запоминающего устройства.

Аналоговые устройства — самые старые из используемых инструментов. Хотя они надежны для статических и стабильных измерений, они не подходят для динамических и переходных условий. Кроме того, они довольно громоздкие и имеют ограничения из-за использования стрелочной индикации.

Электронные инструменты реагируют быстрее и способны мгновенно обнаруживать динамические изменения тока в сети. Примером является цифровой мультиметр, который способен измерить значения тока в динамическом или переходном режиме за секунды.

Виды погрешностей амперметра

Чтобы понять размер погрешности в измерениях, нужно сравнить полученные результаты с эталонными.

В метрологии используют для всех электротехнических измерителей, как для амперметров, так и для вольтметров, несколько видов погрешностей: абсолютную, относительную и приведенную.

Абсолютная погрешность амперметра — это разность Δ между результатом измерения, полученного на шкале прибора (Xи) и действительным значением силы тока в цепи (Xд). Абсолютная погрешность амперметра описывается простой формулой и выражается в единицах тока А.

  • Δх — дельта Х
  • Xд — действительное показание силы тока, принимаемой по образцовому прибору;
  • Xи — измеренное значение на шкале прибора.

Относительная погрешность (δ) — отношение абсолютной погрешности амперметра Δх к действительному показанию силы тока, принимаемому по образцовому прибору. Оно может быть указано как в процентах, тогда частное умножается на 100, либо выражаться в относительных единицах.

Приведенная погрешность — это значение приведенное к диапазону измерения амперметра, приравненного к его шкале. Его получают в виде частного от абсолютной погрешности Δх и нормируемого значения (Xн), в значениях соответствующим абсолютной погрешности Δх умноженной на 100 %:

Класс точности

Это основная характеристика амперметра, которая согласно еще советскому действующему ГОСТ 1845-59, определяет границы возможных погрешностей.

Для всех электроизмерительных приборов, к которым он относится, класс точности (Кл) обозначается в числовом виде по значению, соответствующему предельной допустимой приведенной погрешности δпр, в %.

Все электрические амперметры подразделяются по точности на 8 классов, а затем по группам, которые является важным признаком их классификации:

  • Образцовые: 0.05–0.1–0.2;
  • лабораторные: 0.5–0.1;
  • технические: 1.5–2.0–4.0.

Обратить внимание! Все приборы, у которых погрешность превышает 4%, являются внеклассными.

Образцовые применяют в электроизмерительных процессах для определения класса точности технических и лабораторных амперметров. Лабораторные применяются в научно-технических процессах при электротехнических исследованиях контроля ведения режимов, например на котельных, ГЭС, ТЭЦ и АЭС.

Важно! На панели амперметра класс точности указывается в кружках, квадратах и звездочках. Если он имеет неравномерную шкалу измерения, Кл обозначается ломаной линией.

Как определить класс точности

Согласно действующих государственных норм, производители амперметров обязаны гарантировать его относительную погрешность измерения, полученную по классу точности, указанной на измерительной панели и в паспорте на прибор. Кроме того, все измерительные приборы должны проходить периодическую поверку в метрологических центрах, на соответствие заводскому классу точности. Если такую аттестацию он не проходит, то не может использоваться в измерительных процессах.

Зная абсолютную погрешность и показание силы тока на шкале, можно просто получить реальную силу тока, действующую в цепи. При этом шкала для применения абсолютной погрешности считается равномерной.

Важно! При выборе шкалы стрелочного амперметра, нужно чтобы рабочее значение тока находилось, примерно, в 2/3 диапазона шкалы. Если стрелка будет находиться практически на 0 или на максимальном показатели шкалы, то относительная погрешность будет очень высокой, то есть доверять таким показаниям не рекомендуется.

Пример нахождения показания амперметра по приведенной погрешности

Для примера рассматривается аналоговый измеритель со шкалой до 25 А.

На шкале имеется обозначение класса точности 2.5, кружок или квадрат отсутствует, поэтому эта погрешность приведенная.

При Хп= 25А и значении p = 2.5 можно рассчитать абсолютную погрешность:

Δх =25/100×2.5=0.625 A

Если пользователь обнаружит на панели класс точности заключенный в квадрат, то погрешность нужно будет определять в процентном выражении от измеренного значения.

При показаниях по шкале Iи = 10 А, погрешность прибора не должна превышать

При показаниях по шкале Iи=2 А погрешность будет иной:

При показаниях по шкале Iи=25 А погрешность будет максимальной:

Вот почему важно, чтобы аналоговый прибор работал при измерениях в 2/3 рабочей шкалы.

Пример нахождения показания амперметра по относительной погрешности

Для того чтобы узнать погрешность для амперметра, имеющего класс точности 0.05/0.02, шкалу измерения 0…25 А. Δх определяют по измеряемому показанию на шкале 10А.

Поскольку класс точности задан как c/d, то расчет будет выполняться по формуле:

  • xk=25 А;
  • х=10 А;
  • с=0.05;
  • d=0.02.

δ пр =100 Δх / xN

Нормирующее значение xN=xk=25 A,

Δх = δ пр×xN/100=0.105×25/100=0.026 A

Выбор амперметра по метрологическим характеристикам

Наиболее частым источником ошибки при измерении тока считается то, что амперметр имеет ненулевое входное сопротивление. Напряжение, возникающее на измерителе, приводит к снижению напряжения на тестируемом устройстве. Если уменьшение будет значительным, это приведет к значительно меньшему протеканию тока. Другими словами, измеритель не показывает ток, который фактически протекает в сети.

Для того чтобы максимально нивелировать эту погрешность, применяют два основных типа архитектуры измерения: шунтирующие амперметры и с обратной связью.

Погрешность, вызванная шунтирующим измерителем, определяемая в виде частного напряжения амперметра, деленная на выходное сопротивление.

Амперметры с обратной связью ближе к «идеальным». Он вырабатывает напряжение на пути обратной связи операционного усилителя с высоким коэффициентом усиления. Это напряжение также пропорционально измеряемому току, но не появляется на входе прибора. В результате чувствительные измерители с обратной связью, такие как электрометры и пикоамперметры, имеют нагрузку по напряжению, обычно ограниченную до 200 мкВ.

Для промышленных измерений наиболее часто применяются амперметры аналогового панельного типа. При их выборе следует учитывать такие моменты:

  1. Выбор типа. При измерении І постоянного, следует выбрать измеритель постоянного тока, то есть с магнитоэлектрическим измерительным механизмом. При измерении переменного тока нужно обратить внимание на форму волны и частоту. Если это синусоида, то измеряют только эффективное значение, с последующим преобразованием в максимальное или среднее значение.
  2. Класс точности. Чем более высокий класс точности измерителя, тем выше его цена, тем сложнее у него ремонт и метрологическая аттестация. Поэтому для выполнения большинства инженерных измерений достаточно класса точности 1.5, не стоит применять образцовые или лабораторные приборы.
  3. Выбор шкалы. Чтобы в полной мере использовать возможности амперметра по классу точности, измеряемый показатель должен быть в интервале 1/2

2/3 максимальной шкалы.

Важно! Внутреннее сопротивление — определяющая величина при выборе измерителя. Ее следует принимать в соответствии с величиной измеряемого импеданса, иначе это приведет к большим ошибкам измерения. Поскольку внутреннее сопротивление отражает энергопотребление самого измерителя, при измерении тока прибор с внутренним сопротивлением следует выбирать, как можно меньшим.

Видео по теме