Инфракрасный светодиод 12 вольт

Светодиоды 12 вольт

Светодиоды 12 вольтовые 3-5-8-10 мм

С встроенным резистором

Прозрачные, белые матовые, цветные матовые (все цвета)

В этом разделе представлено 30 % светодиодов 12вольт имеющихся в наличии

Весь ассортимент можно посмотреть здесь; Полный прайс

Сортировать по: наименованию (возр/убыв), цене (возр/убыв)

Минимальный заказ: 500шт.

Минимальный заказ: 500шт.

Минимальный заказ: 500шт.

Минимальный заказ: 50шт.
Код товара: 166а

Минимальный заказ: 50шт.
Код товара: 164а

Минимальный заказ: 50шт.
Код товара: 172а

Минимальный заказ: 50шт.
Код товара: 171а

Минимальный заказ: 50шт.
Код товара: 170а

Минимальный заказ: 50шт.
Код товара: 175а

Минимальный заказ: 50шт.
Код товара: 174а

Минимальный заказ: 50шт.
Код товара: 173а

Минимальный заказ: 50шт.
Код товара: 178а

Минимальный заказ: 50шт.
Код товара: 177а

Минимальный заказ: 50шт.
Код товара: 176а

Минимальный заказ: 50шт.
Код товара: 180а,н,т

Минимальный заказ: 50шт.
Код товара: 179а

Минимальный заказ: 500шт.
Код товара: 388-397

Светодиод ARL2-5213UWC-5cd-12v

Минимальный заказ: 50шт.
Код товара: 388

Светодиод ARL2-5213URC-2cd-12v

Минимальный заказ: 50шт.
Код товара: 392a

Минимальный заказ: 50шт.
Код товара: 393а

Минимальный заказ: 50шт.
Код товара: 395a

Минимальный заказ: 500шт.
Код товара: 388-397

Светодиод ARL2-5213UWC-5cd-12v

Минимальный заказ: 50шт.
Код товара: 389

Светодиод ARL2-5213URC-2cd-12v

Минимальный заказ: 50шт.
Код товара: 391

Минимальный заказ: 50шт.
Код товара: 393

Минимальный заказ: 50шт.
Код товара: 395

Минимальный заказ: 50шт.
Код товара: 397

Минимальный заказ: 500шт.
Код товара: 388-398

Минимальный заказ: 50шт.
Код товара: 390

Светодиод ARL2-5213URC-2cd-12v

Минимальный заказ: 50шт.
Код товара: 391а

Светодиод ARL2-5213UYC-2cd-12v

Минимальный заказ: 50шт.
Код товара: 394

Минимальный заказ: 50шт.
Код товара: 396

излучающие диоды ИК и УФ диапазона 209

Страница: 1 2 3 4 5 6

BL-L513IRAB, ИК светодиод 30″ d=5мм 940нм, голубая линза
Betlux Electr.

L-34F3C, Диоды ИК, УФ
Kingbright

L-34SF4C, светодиод инфракрасный d=3мм 880нм 20мВт
Kingbright

L-53F3C, светодиод инфракрасный d=5мм 940нм 30мВт 30гр water clear
Kingbright

L-53SF4C, светодиод инфракрасный d=5мм 880нм 30мВт
Kingbright

L-53SF6C, светодиод инфракрасный d=5мм 860нм 100мВт
Kingbright

L-53SF7BT, светодиод инфракрасный d=5мм 100мВт
Kingbright

L-7113F3C, Светодиод ИК d=5мм 940нм 30мВт
Kingbright

TSAL6200, ИК диод d=5мм 940нм 60мВт
Vishay

TSML1000, High Power Infrared Emitting Diode 940 nm
Vishay

VS1838B, ИК приемник
Китай

АЛ 107 А
Россия

АЛ 107 Б(Б-02)
Россия

SEP8507-001, диод 935нм 0.4мВт/см2
Honeywell

АЛ 106 А, [93-97г]
Россия

АЛ 118 А
Россия

АЛ 119 В
Россия

АЛ 157 А, [00-08г]
Россия

ИНФРАКРАСНЫЙ ДИОД 3Л 119 А, (90-92г)
Россия

ARL-5213VC-200MCD, светодиод ультрафиолетовый (395-400 нм)
Arlight

BIR-BM13J4G, T1 3/4 (5mm)
Bright-On

BL-L189VC, Светодиод Flat Top ультрафиолетовый 50 d=1.8мм 150мКд 405нМ (UV)
Betlux Electr.

BL-L314IRBB, ИК светодиод 40″ d=3мм 880нм, голубая линза
Betlux Electr.

BL-L314IRBC, ИК светодиод 40″ d=3мм 880нм
Betlux Electr.

BL-L314IRCB, ИК cветодиод 40″ d=3мм 850нм, голубая линза
Betlux Electr.

BL-L314IRCC, ИК светодиод 40″ d=3мм 850нм
Betlux Electr.

BL-L314IRCY, ИК светодиод 40″ d=3мм 850нм, желтая линза
Betlux Electr.

BL-L513IRAC, ИК светодиод 30″ d=5мм 940нм
Betlux Electr.

BL-L513IRBB, ИК светодиод 30″ d=5мм 880нм, голубая линза
Betlux Electr.

BL-L513IRBC, ИК светодиод 30″ d=5мм 880нм
Betlux Electr.

BL-L522VC, Светодиод ультрафиолетовый 15 d=5мм 180мКд 405нМ (UV)
Betlux Electr.

BL-L563VC, Светодиод овальный ультрафиолетовый 60/30 d=5мм 100мКд 405нМ (UV)
Betlux Electr.

FM-P3528IRS-850U, 2835
NationStar

FYL-3014IRCC1A, T1 (3mm)
Foryard

FYL-3014IRDB1A, T1 (3mm)
Foryard

FYL-5013IRAC1C, T1 3/4 (5mm)
Foryard

FYL-5013IRAT1B, T1 3/4 (5mm)
Foryard

FYL-5013IRAT1C, T1 3/4 (5mm)
Foryard

GNL-3014VC, Светодиод ультрафиолетовый 25 d=3мм 100мКд 400нМ (Super Violet)
G-nor

Страница: 1 2 3 4 5 6

Купить излучающие диоды ИК и УФ диапазона в интернет-магазине

Инфракрасные (ИК) излучающие диоды (светодиоды) не видны человеческому глазу используются для управления различными устройствами, а также для передачи информации. Длины волн ИК диодов варьируются от 660 до 955 нм, рабочее напряжение от 1.2 до 3 В. Ультрафиолетовые (УФ) светодиоды используются для стерилизации, в косметике, при проведении судебно-медицинских экспертиз, изменения состояния материалов и дезинфекции воды. Длины волн ультрафиолетовых диодов варьируются от 365 до 405 нм и напряжением от 2.7 до 4.5 В.

Интернет-магазин Платан предлагает ИК/лазерные диоды и модули и излучающие диоды ИК и УФ диапазона различных производителей по конкурентной цене. Для выбора компонента используйте поиск по параметрам, техническую документацию и описание. Доставка товара осуществляется различными транспортными компаниями или самовывозом из офисов в Москве и Санкт-Петербурге, предлагаем любые виды оплаты.

Подключение светодиода к 12 вольтам

Светодиод – это надежный элемент, который будет эффективно работать лишь в том случае, если правильно установить его. Включение светодиода на 12 вольт должно осуществляться особенно внимательно. Так, обязательно должен присутствовать токоограничивающий резистор, нельзя забывать о полярности, а также об использовании одинаковых диодов в одной цепочке.

Что это такое

Светодиоды уже давно стали популярными осветительными приборами. Это связано с их отличной энергоэффективностью и большим сроком службы (в сравнении с обычными лампочками). Кроме того, цены продолжают падать по мере увеличения производства данных изделий.

  • долговечность – до 10 лет непрерывного свечения;
  • прочность – не боятся ударов и вибраций;
  • разнообразие – множество типоразмеров и цветов свечения;
  • низкое энергопотребление – экономичнее обычной лампочки примерно в 10 раз при схожих характеристиках;
  • пожаробезопасность – из-за малого энергопотребления не перегреваются, поэтому не способны привести к пожару.

LED (light emitting diode) – это аббревиатура, обозначающая светоизлучающий диод. Из школьного курса физики известно, что он полярен. Поэтому светодиод не будет работать, если не соблюдается полярность, а также есть вероятность его сгорания(случится пробой). Обратное напряжение пробоя полупроводниковой структуры составляет 4-5 вольт. При этом он все равно может заработать при правильном подключении, однако в нем начнутся деструктивные процессы, что значительно снизит срок службы.

Проще говоря, светоизлучающий диод (LED) является полупроводниковым устройством, которое светится при прохождении через него электрического тока. Поскольку свет генерируется в твердом полупроводниковом материале, светодиоды описываются как твердотельные устройства. Термин «твердотельное освещение» отличает эту технологию от других источников, которые используют подогреваемые нити (лампы накаливания и вольфрам-галогеновые), а также газоразрядные (флуоресцентные лампы).

Как выбрать светодиод для подключения к 12 вольтам

Необходимый вид диодов подбирают исходя из конкретных задач. На рынке существует множество вариантов, от индикаторных до сверхмощных. Для подсветки кнопок и индикаторов на панели приборов в авто можно использовать маломощные диоды. Для подсветки интерьера квартиры или машины применяют простые сверхъяркие. Для установки в головную оптику, дневные головные огни автомобилей или в фонарики устанавливают мощные светодиоды.

С технической точки зрения нет каких-либо ограничений по мощности и потребляемому току. Главное, чтобы напряжение диода не превышало напряжение источника питания.

Важным фактором является размер и форма корпуса. В зависимости от предназначения могут использоваться диоды в круглом корпусе или детали поверхностного монтажа (SMD). Все зависит от потребности и задач.

Какие диоды можно подключить к 12 вольтам

Для светодиодов практически нет ограничения по напряжению. Поэтому к 12 вольтам можно подключить почти любой из них. Главное — соблюдать правила. LED лампочкам обычно необходимо от 1,5 до 3,5 вольт в зависимости от цвета и яркости. Если на прилавке магазина вы встретите светоизлучающий диод на 12 вольт, то на самом деле вам предлагают сборку из нескольких кристаллов, включенных последовательно.

Варианты подключения

Самое время ознакомиться с основными вариантами подключения.

К одному резистору

Как мы уже выяснили выше, светодиод имеет полярность. Поэтому он подключаетсяк источнику питания постоянного напряжения. Самые распространенные виды потребляют около 10-20 мА. По сути – это главная характеристика детали. Вторым параметром указывают падение напряжения. Для обычных светодиодов оно находится в пределах 2-4 В.

Единственная правильная схема подключенияосуществляется с токоограничивающим резистором. Он подбирается по закону Ома. Сопротивление рассчитывается как разница напряжения источника и падения напряжения, деленная на произведение максимального тока диода и коэффициента надежности (обычно равен 0,75).

Закон Ома: «величина тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку, и обратно пропорциональна его сопротивлению».

Также необходимо вычислить мощность резистора. Она рассчитывается по простой формуле: разница напряжения источника и падения напряжения в квадрате, деленная на сопротивлениев омах.

Читайте также  Каким прибором измеряется освещенность рабочей поверхности?

Последовательное подключение нескольких LED

Последовательное подключение – это установка двух и более светодиодов в один ряд. В данной схеме также используется один токоограничивающий резистор. Формула расчета аналогична для единичного диода, но падение напряжения суммируется.

Для примера возьмем наш теоретический светодиод белого цвета на 3 вольта и 20 mA. Мы последовательно подключаем три единицы. Таким образом, сумма нашего падения напряжения составит 9 вольт. Остаток в три вольта делим на силу тока в 0.02 ампера с коэффициентом надежности 0,75. В результате мы узнаем что нам потребуется один резистор на 200 Ом.

Каждый диод к отдельному резистору

В данной схеме каждый светодиод подключается к плюсу и минусу источника питания. Несмотря на то, что в Сети можно найти схемы с одним общим резистором, на практике такое решение нецелесообразно. Даже в одной партии диоды различаются по параметрам потребляемого тока и падения напряжения. В итоге мы получим разную интенсивность свечения диодов. Сопротивление рассчитывается для каждого диода отдельно.

Как узнать полярность светодиода

Рассматривая обычный круглый светоизлучающий диод, можно заметить, что два его вывода имеют разную длину. Таким образом обозначается катод и анод. Анод длиннее и подключаетсяк положительному выходу батареи или блока питания, а катод к отрицательному.

Также катод на некоторых типах корпусов может быть обозначен небольшим спилом. Бывают и исключения, поэтому всегда стоит изучать инструкцию к конкретному диоду.

Как подключить к 12 вольтам

Схема подключения светодиода к источнику питания 12 В не отличается от стандартной, но необходимо рассчитать сопротивление и мощность резистора. Для проверки или предварительного тестирования сборки достаточно одного резисторана 1 кОм.

Для примера возьмем самый распространенный тип светодиода– белый с максимальной силой тока 20 мА. По сути, вольтаж не играет особой роли. Главное, чтобы ток не превышал максимально разрешенные параметры. Падение напряжения в зависимости от модели составляет от 1,8 до 3,6 В. Для удобства расчетов возьмем 3 вольта.

Сопротивление для светодиодов

  • Разница напряжение источника питания и падения напряжения – 12-3=9.
  • Произведение максимальной силы тока (ампер) и коэффициента надежности – 0.02*0,75=0,015.
  • Рассчитываем сопротивление(кОм) – 9/0.015 = 600 (кОм).

Расчет мощности резистора:

  • Разница напряжения источника питания и падения напряжения – 12-3=9.
  • Согласно формуле, возводим в квадрат – 9*9=81.
  • Делим на сопротивлениерезисторав омах – 81/600=0,135 Вт.

Таким образом, нам идеально подойдет резистор MRS25 (0,6 Вт, 600 Ом, ± 1%). На середину 2020 года его стоимость составляет около 8 рублей. Обычно нет необходимости высчитывать мощность резистора. Тем не менее, это важно делать для проверки будущей сборки.

Подключение мощных LED диодов к 12В

При подключении современных мощных кристаллов или их сборок принцип не меняется. В цепи также должен присутствовать гасящий резистор. Для примера можно взять популярный на китайских торговых площадках светодиод. Это сборка из нескольких кристаллов, соединенных параллельно. Потребляемый ток составляет 350 mA, а напряжение по-прежнему 3,4 вольта.

Подставляя параметры в нашу формулы, мы легко узнаем, что нам потребуется установить резистор с сопротивлением 32 Ома и мощностью 2,2 Вт.

Эффективное подключение к одному ИП

Выше мы уже выяснили, что к одному источнику питания можно запитать неограниченное количество светодиодов. Главное, чтобы хватило мощности. Тем не менее, простое параллельное включение лампочек с резистором для каждой из них является неэффективным. Из предыдущего пункта мы увидели, что более 2/3 мощности рассеивается на токоограничивающем резисторе. Поэтому часто возникает вопрос, сколько всего светодиодов можно подключить к 12 в.

Наиболее эффективным подключением к 12 вольтам считается цепочки из трех последовательных светодиодов с одним резистором. По такой же схеме выпускаются все светодиодные ленты, работающие от блока питания на 12 В.

Проблемы при подключении

Принципиальная схема подключения светодиодов:

  1. Не использовать токоограничивающий резистор. Поскольку через светодиод будет проходить слишком большой ток, он вскоре выйдет из строя.
  2. Последовательное включение без резистора. Даже если вам кажется, что запитать четыре 3-вольтовых резистора к 12-вольтовой сети – это хорошая идея, вы заблуждаетесь. Из-за слабого контроля силы тока элементы быстро разрушаются.
  3. Использование одного резистора при параллельном подключении диодов. Из-за отличий в характеристиках диоды будут светить с разной интенсивностью. Увеличивается скорость разрушения.

Советуем посмотреть видео на тему: Правильное подключение светодиодов.

Вывод

Надежность светодиодов гораздо выше ламп накаливания и газоразрядных моделей, но лишь при правильном подключении. Поэтому нельзя забывать о необходимости токоограничивающего резистора, который подбирается по простой форме. Также в обязательном порядке соблюдается полярность, особенно при монтаже диода к 12-вольтовой сети.

Инфpaкрасный светодиод: хаpaктеристика ИК диодов, какие подходят для излучателя пульта ДУ, светодиодные инфpaкрасные излучатели большой мощности

Одним из распространенных и широко применяемых в различных областях радиоэлектроники лед-элементов является инфpaкрасный светодиод. Спектр его свечения находится в невидимом человеческому глазу диапазоне длин волн электромагнитного излучения. Рассмотрим, какие разновидности светоисточников подобного типа бывают, каковы их главные технические хаpaктеристики, какие самые мощные их модификации существуют и в каких сферах все они используются.

Разновидности ИК излучающих диодов

На современном рынке радиодеталей светодиодные излучатели представлены в достаточно широком ассортименте. Существует несколько десятков позиций, различающихся по следующим основным параметрам:

  1. Мощности излучаемого потока света (или, как вариант, наибольшему проходящему через лэд-кристалл току).
  2. Прямому назначению.
  3. Форм-фактору.

Инфpaкрасные светодиоды светосилой до 100 мВт работают на номинале тока, не превышающем значение в 50 мА. Импортные аналоги несколько отличаются от отечественных. Их лед-кристаллы заключены в 3- или 5-милиметровый корпус овальной формы. Внешне они похожи на стандартный led-элемент с двумя выводами. По цвету линзы модели различаются от чисто прозрачного до желтого и гoлyбого оттенка.

Российские компании уже много лет изготавливают инфpaкрасные светодиоды в хаpaктерном мини-корпусе. Примером являются экземпляры: 3Л107А или АЛ118А. В противоположность им более мощные версии диодов производят на DIP-матрице по технологии smd, как например, модель SFH4715S линейки Osram.

Обратите внимание! Ввиду того, что ИК диод излучает в незаметном невооруженному глазу диапазоне, проверить его работоспособность можно посредством изображения, полученного съемкой цифровой видеокамеры, например, через мобильный телефон.

Технические хаpaктеристики

Так как инфpaкрасное излучение невидно зрению человека и диапазон его длин волн распространен достаточно широко – 0,75-2000 микрометров – то хаpaктерный для обычных светодиодов набор технических параметров не применяется для них. Вместо этого для лед-элементов, работающих в ИК-сегменте спектра, используются следующие главные обозначения их свойств:

  1. Мощность в единицу времени (Вт/ч), либо дополнительно указывается на какую площадь излучателя она приходится.
  2. Интенсивность потока в пределах прострaнcтвенного/телесного угла, выражаемая в Вт/ср (стерадианах).

Читайте также Что такое светодиод: описание и хаpaктеристики

Однако далеко не всегда требуется постоянное инфpaкрасное излучение, поэтому для светодиодов конкретного применения указываются хаpaктеристики не только в непрерывном, но и в импульсном режиме функционирования. При этом в последнем случае мощность сигнала на выходе может в несколько раз превышать аналогичный показатель, свойственный для первого варианта.

Помимо выше рассмотренных специфических параметров, для инфpaкрасных светодиодов хаpaктерны и общие показатели эксплуатации, также указываемые в паспортных данных:

  1. Диапазон длин волн.
  2. Номинальный прямой ток.
  3. Наивысший импульсный ток.
  4. Величина падения напряжения.
  5. Значение обратного напряжения.

Следует знать! Все существующие виды лед-элементов (лампы, светодиоды), в том числе излучающие в инфpaкрасной области, хаpaктеризуются различным углом рассеивания, даже в рамках одной серии – от узкого в 15 до широкого в 80 . Поэтому при их выборе для конкретного применения нужно обращать внимание и на этот параметр, указанный в маркировке.

Мощные инфpaкрасные светодиоды

Для изготовления мощного инфpaкрасного светодиода требуется большой лед-кристалл. В связи с этим возникает несколько технологических проблем:

  1. С увеличением площади лэд-кристалла существенно возрастает его стоимость.
  2. При работе на полную мощность такого led-элемента выделяется настолько много энергии, что возникает сильный перегрев его основания и, как следствие, последующее быстрое разрушение.

Если же объединить несколько близко установленных лед-кристаллов, возникает значительная потеря мощности из-за повышения нерабочей боковой площади. Ввиду выше рассмотренных обстоятельств, разработчики предложили несколько компромиссных вариантов:

  1. На данный момент допустимо изготавливать кристаллы размером до 1 мм 2 . До этого порогового значения можно существенно повысить силу тока, а значит, и мощность – в результате снижения сопротивления в лэд-материале из-за его нагрева.
  2. Внедряются все более совершенные рефлекторы, собирающие боковое излучение к центру.
  3. Производятся линзы с высоким коэффициентом преломления, что заставляет лучше собирать и направлять в пучок боковые волны.

Важно! Инфpaкрасные светодиоды и лазерные их модификации – это совершенно различные по принципу действия и техническим хаpaктеристикам светильники. В основе последних применяются квантоворазмерные гетероструктуры.

Область применения

Инфpaкрасные светодиоды применяют далеко не только для дистанционных пультов управления бытовыми и технологическими приборами (телевизорами, кондиционерами, котельной аппаратурой), но также во многих других областях:

  1. В создании направленной системы подсветки медицинского оборудования.
  2. В видеонаблюдении – для скрытого или дополнительного освещения охраняемых объектов и территорий. Здесь применяются различные типы инфpaкрасных прожекторов.
  3. В приборах ночного видения.
  4. В устройствах передачи данных посредством оптоволоконной сети.
  5. В научно-исследовательских направлениях (твердотельный лазер, подсветка и т. д.).
  6. В военно-промышленной сфере.
  7. В детекторах, датчиках, сигнализациях.
  8. В конвейерных сушилках на мукомольных и зернопереpaбатывающих предприятиях.
  9. Для стерилизации капиллярно-пористых пищевых продуктов.
  10. В качестве компонентов контрольно-измерительного и прочего оборудования.
Читайте также  Светодиоды для осветительных ламп

Читайте также Что такое и где применяется RGB-подсветка

Добиться максимально качественно инфpaкрасного излучения от светодиодов, работающих в импульсном режиме, можно только при строгом контроле параметров напряжения. Небольшое отклонение от нормы приведет к изменениям мощности излучения в несколько раз! Так, например, если на приборах, работающих в непрерывном режиме, указывается 5 Вт/ср, то при переходе их в импульсный режим – порядка 125 Вт/ср. Поэтому для стабильности работы таких систем рекомендуется периодически уделять внимание их сервису и необходимому обслуживанию.

Основные выводы

Инфpaкрасные светодиоды излучают в невидимой для глаза человека области спектра, и потому для обозначения их главных параметров используют несколько отличные от обычных лед-элементов хаpaктеристики:

  1. Мощность за период времени или с конкретной площади излучателя.
  2. Интенсивность в границах определенного прострaнcтвенного угла.

Существуют десятки модификаций инфpaкрасных светодиодов. Все они различаются не только по силе излучения, но также назначению и форм-фактору. Чем мощнее лед-кристалл, тем больше он нагревается и разрушается. Поэтому производители при изготовлении мощных моделей прибегают к некоторым ухищрениям, а не идут по пути прямого увеличения их размеров. Сфера применения ИК-диодов обширна – от индикации в пультах ДУ бытовой техники до сложных военно-промышленных и медицинских приборов.

Если вы владеете информацией о том, какие еще инфpaкрасные светодиоды существуют и где они применяются, обязательно напишите об этом в комментариях.

Светодиоды: виды и схема подключения

Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode).

Содержание статьи

  • Устройство светодиода
  • Как работает светодиод?
  • Виды и основные параметры светодиодов
  • Применение светодиодов
  • Основные правила подключения светодиодов
  • Основные характеристики светодиодов
  • Способы подключения
  • Как подключить светодиоды к сети переменного тока 220 В через блок питания
  • Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение

Устройство светодиода

Хотя и существует множество светодиодов, самая распространённая форма состоит из 5-миллиметрового полимерного корпуса с линзой, медного или алюминиевого основания, катода, параболического рефлектора (отражателя) и кристалла, который соединяется с анодом при помощи тонкой золотой проволоки.

Как работает светодиод?

Принцип работы изделия основывается на взаимодействии двух полупроводников, положительного и отрицательного типа (p-n-переход). Когда электрический ток проходит через полупроводники, в месте соприкосновения выделяется энергия, излучающая свет. Это обусловлено переходом от одного типа проводимости к другому, когда ионы положительно заряженных дырок соединяются с отрицательными зарядами электронов.

Виды и основные параметры светодиодов

На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер. В продаже имеется большое количество типов светодиодов, которые различаются между собой функциональным назначением, конструкцией, мощностью, цветом свечения и другими свойствами.

По назначению светодиоды разделяют на два вида – индикаторные и осветительные.

  • светодиоды SMD;
  • сверхъяркие Super Flux “Piranha”;
  • DIP светодиоды (Direct In-line Package);
  • Straw Hat («соломенная шляпа»).
  • COB (Chip On Board) светодиоды;
  • SMD LED;
  • филаментные (Filament LED).

Индикаторные светодиоды отличаются малой мощностью и умеренной яркостью свечения. Используются для цветовой индикации режимов работы различных приборов и оборудования, а также для подсветки дисплеев и приборных щитов. Разновидности индикаторных светодиодов:

  • DIP-светодиоды. Кристалл-излучатель находится в выводном корпусе, который чаще всего представляет собой выпуклую линзу. Минус – малый угол рассеивания излучения.
  • «Пиранья» – излучатель сверхвысокой яркости с четырьмя выводами, обеспечивающими его удобное крепление на плате. Востребован для подсветки приборов в автомобилях и в рекламных вывесках.
  • «Соломенная шляпа». Цилиндрический двухвыводный прибор со значительным углом рассеивания излучения и увеличенным диаметром линзы. Применяется в декоративных конструкциях и светосигналах тревоги.
  • SMD-светодиоды. Приборы сверхвысокой яркости располагаются в корпусах, рассчитанных на SMT-монтаж. В их маркировке указываются размеры в дюймах (их сотых долях) или в мм. На базе SMD-светодиодов изготавливаются светодиодные ленты.

Осветительные светодиоды встречаются в конструкции фонарей, фар, лент. Отличаются мощностью и яркостью свечения. Большинство осветительных приборов размещают в корпусах для SMT-монтажа. Изготавливаются в двух разновидностях белого цвета:

  • cool white – холодный;
  • warm white – теплый.

Осветительный SMD-светодиод представляет собой теплоотводящую подложку, на которой смонтирован излучающий кристалл, обработанный люминофорным составом.

Применение светодиодов

Такая продукция активно применяется в разных областях: световая реклама, домашние и промышленные осветительные приборы, автомобильная светотехника, светофоры и дорожные знаки, дизайн помещений, ландшафтная и архитектурная подсветка, а также многое другое.

  • значительная длительность эксплуатации;
  • экологическая безопасность;
  • высокая надежность и безотказность;
  • экономия электроэнергии;
  • высокое качество освещения;
  • низкие эксплуатационные расходы.

Основные правила подключения светодиодов

Конструкция светодиодов рассчитана на их подключение только к источникам постоянного тока с соблюдением полярности. Существует три варианта определения полярности:

  • По длине ножки (кроме SMD). Более длинная ножка является катодом, а короткая – анодом. В SMD-светодиодах имеется срез (ключ), который всегда располагается ближе к катоду.
  • С помощью мультиметра. Прибор устанавливают в режим «Прозвонка». Красный и черный щупы устанавливают на выводы. Если прибор засветился, то, значит, что красный щуп был подключен к аноду, а черный – к катоду. Если свечение не возникло, значит, надо поменять положение щупов. Если результат не изменился (свечение отсутствует), значит, прибор вышел из строя.

Основные характеристики светодиодов

Две главные характеристики, указываемы в паспорте светоизлучающего прибора:

  • Падение напряжения на приборе. Типичное значение – 3,2 В. Также для каждого светодиода существуют максимально допустимые напряжения Umax и Umaxобр – для прямого и обратного включений.
  • Номинальный ток. Обычно эти приборы рассчитаны на силу тока в 20 мА.

Способы подключения

Простейший вариант – подключение к низковольтному источнику постоянного тока.

Самый удобный и безопасный вариант – подключить светодиод к батарейке или аккумулятору с помощью включения в схему маломощного резистора. Его функция – ограничение тока, протекающего через p-n-переход, определенным значением. Без этого элемента LED быстро утратит рабочие свойства.

Резистор выбирают по сопротивлению и мощности. Расчет сопротивления по формуле:

R = (Uпитания – Uпаспорт.)/Iном., Ом, в которой:

  • Uпитания – напряжение электропитания, В;
  • Uпаспорт. – падение напряжения, паспортное значение, В;
  • Iном. – номинальный ток.

Полученное значение округляют в большую сторону до ближайшей номинальной величины из ряда Е24. После этого рассчитывают мощность, которую должен рассеивать резистор.

P = Iном. 2 х R, где R – выбранное по таблице значение сопротивления.

Провести все эти действия можно быстро и просто с использованием онлайн-калькулятора.

Как подключить светодиоды к сети переменного тока 220 В через блок питания

Существует несколько типов блоков питания:

  • Стабилизированные источники постоянного напряжения для светодиодов на 5 Вольт и 12 Вольт. При колебаниях параметров сети напряжение на выходе такого источника питания остается постоянным и равным заявленной в паспорте величине. LED-светильники подсоединяют через резисторы.
  • Драйвер – импульсный блок питания со стабилизированным током. Характеристики, которые учитывают при его выборе: максимальное и минимальное выходное напряжение, выходной (рабочий) ток. В драйвере присутствует схема, стабилизирующая ток при скачках входного напряжения 220 В. При подключении светодиодного излучателя к драйверу резистор не требуется.
Читайте также  Как рассчитать коэффициент использования оборудования?

Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение

При подключении нескольких светоизлучающих приборов к источнику питания может использоваться два варианта соединения – последовательное и параллельное.

Последовательное соединение представляет цепь полупроводниковых приборов, в которой катод первого излучателя спаян с анодом следующего – и так далее. Через все элементы последовательной цепи протекает ток одного значения, а падение напряжения суммируется. Мощность БП выбирается равной или превышающей сумму мощностей каждого элемента.

Минусы последовательного соединения:

  • При значительном количестве элементов цепи необходимо выбирать БП большого вольтажа.
  • При выходе из строя одного LED-диода перестает работать вся цепь.

В длинных лентах на 60-70 диодов на каждом элементе происходит падение напряжения примерно на 3 В, то есть такие ленты можно присоединять к сети 220 В через выпрямитель.

При параллельном подсоединении напряжение на всех элементах цепи будет равным, а суммируются токи каждого LED. Основная проблема в данном случае состоит в том, что LED-светильники, даже из одной партии, часто имеют различные характеристики. Поэтому, если поставить один общий резистор, на лампочки может подаваться ток разного значения, вследствие чего некоторые элементы будут светить слишком ярко, а некоторые – тускло. Решение проблемы – установка отдельных резисторов для каждого диода.

Минусы параллельного подключения:

  • большое количество элементов цепи из-за необходимости использования индивидуальных резисторов для каждого диода;
  • существенный рост нагрузки при перегорании одного LED-диода (если используется один мощный резистор на всю цепь).

Это самый подходящий вариант соединения светодиодов, поскольку он позволяет хотя бы частично скомпенсировать недостатки последовательного и параллельного подключений. В этом случае параллельно соединяются цепочки последовательно расположенных элементов. Этот способ применяется в современных елочных гирляндах или лентах. Преимущество такого решения: если даже выйдут из строя одна или несколько параллельных цепочек, остальные будут исправно светить.

Разновидности, характеристики и сфера применения инфракрасных светодиодов

Одним из распространенных и широко применяемых в различных областях радиоэлектроники лед-элементов является инфракрасный светодиод. Спектр его свечения находится в невидимом человеческому глазу диапазоне длин волн электромагнитного излучения. Рассмотрим, какие разновидности светоисточников подобного типа бывают, каковы их главные технические характеристики, какие самые мощные их модификации существуют и в каких сферах все они используются.

Разновидности ИК излучающих диодов

На современном рынке радиодеталей светодиодные излучатели представлены в достаточно широком ассортименте. Существует несколько десятков позиций, различающихся по следующим основным параметрам:

  1. Мощности излучаемого потока света (или, как вариант, наибольшему проходящему через лэд-кристалл току).
  2. Прямому назначению.
  3. Форм-фактору.

Инфракрасные светодиоды светосилой до 100 мВт работают на номинале тока, не превышающем значение в 50 мА. Импортные аналоги несколько отличаются от отечественных. Их лед-кристаллы заключены в 3- или 5-милиметровый корпус овальной формы. Внешне они похожи на стандартный led-элемент с двумя выводами. По цвету линзы модели различаются от чисто прозрачного до желтого и голубого оттенка.

Российские компании уже много лет изготавливают инфракрасные светодиоды в характерном мини-корпусе. Примером являются экземпляры: 3Л107А или АЛ118А. В противоположность им более мощные версии диодов производят на DIP-матрице по технологии smd, как например, модель SFH4715S линейки Osram.

Обратите внимание! Ввиду того, что ИК диод излучает в незаметном невооруженному глазу диапазоне, проверить его работоспособность можно посредством изображения, полученного съемкой цифровой видеокамеры, например, через мобильный телефон.

Технические характеристики

Так как инфракрасное излучение невидно зрению человека и диапазон его длин волн распространен достаточно широко – 0,75-2000 микрометров – то характерный для обычных светодиодов набор технических параметров не применяется для них. Вместо этого для лед-элементов, работающих в ИК-сегменте спектра, используются следующие главные обозначения их свойств:

  1. Мощность в единицу времени (Вт/ч), либо дополнительно указывается на какую площадь излучателя она приходится.
  2. Интенсивность потока в пределах пространственного/телесного угла, выражаемая в Вт/ср (стерадианах).

Однако далеко не всегда требуется постоянное инфракрасное излучение, поэтому для светодиодов конкретного применения указываются характеристики не только в непрерывном, но и в импульсном режиме функционирования. При этом в последнем случае мощность сигнала на выходе может в несколько раз превышать аналогичный показатель, свойственный для первого варианта.

Помимо выше рассмотренных специфических параметров, для инфракрасных светодиодов характерны и общие показатели эксплуатации, также указываемые в паспортных данных:

  1. Диапазон длин волн.
  2. Номинальный прямой ток.
  3. Наивысший импульсный ток.
  4. Величина падения напряжения.
  5. Значение обратного напряжения.

Следует знать! Все существующие виды лед-элементов (лампы, светодиоды), в том числе излучающие в инфракрасной области, характеризуются различным углом рассеивания, даже в рамках одной серии – от узкого в 15 до широкого в 80 . Поэтому при их выборе для конкретного применения нужно обращать внимание и на этот параметр, указанный в маркировке.

Мощные инфракрасные светодиоды

Для изготовления мощного инфракрасного светодиода требуется большой лед-кристалл. В связи с этим возникает несколько технологических проблем:

  1. С увеличением площади лэд-кристалла существенно возрастает его стоимость.
  2. При работе на полную мощность такого led-элемента выделяется настолько много энергии, что возникает сильный перегрев его основания и, как следствие, последующее быстрое разрушение.

Если же объединить несколько близко установленных лед-кристаллов, возникает значительная потеря мощности из-за повышения нерабочей боковой площади. Ввиду выше рассмотренных обстоятельств, разработчики предложили несколько компромиссных вариантов:

  1. На данный момент допустимо изготавливать кристаллы размером до 1 мм 2 . До этого порогового значения можно существенно повысить силу тока, а значит, и мощность – в результате снижения сопротивления в лэд-материале из-за его нагрева.
  2. Внедряются все более совершенные рефлекторы, собирающие боковое излучение к центру.
  3. Производятся линзы с высоким коэффициентом преломления, что заставляет лучше собирать и направлять в пучок боковые волны.

Важно! Инфракрасные светодиоды и лазерные их модификации – это совершенно различные по принципу действия и техническим характеристикам светильники. В основе последних применяются квантоворазмерные гетероструктуры.

Область применения

Инфракрасные светодиоды применяют далеко не только для дистанционных пультов управления бытовыми и технологическими приборами (телевизорами, кондиционерами, котельной аппаратурой), но также во многих других областях:

  1. В создании направленной системы подсветки медицинского оборудования.
  2. В видеонаблюдении – для скрытого или дополнительного освещения охраняемых объектов и территорий. Здесь применяются различные типы инфракрасных прожекторов.
  3. В приборах ночного видения.
  4. В устройствах передачи данных посредством оптоволоконной сети.
  5. В научно-исследовательских направлениях (твердотельный лазер, подсветка и т. д.).
  6. В военно-промышленной сфере.
  7. В детекторах, датчиках, сигнализациях.
  8. В конвейерных сушилках на мукомольных и зерноперерабатывающих предприятиях.
  9. Для стерилизации капиллярно-пористых пищевых продуктов.
  10. В качестве компонентов контрольно-измерительного и прочего оборудования.

Добиться максимально качественно инфракрасного излучения от светодиодов, работающих в импульсном режиме, можно только при строгом контроле параметров напряжения. Небольшое отклонение от нормы приведет к изменениям мощности излучения в несколько раз! Так, например, если на приборах, работающих в непрерывном режиме, указывается 5 Вт/ср, то при переходе их в импульсный режим – порядка 125 Вт/ср. Поэтому для стабильности работы таких систем рекомендуется периодически уделять внимание их сервису и необходимому обслуживанию.

Основные выводы

Инфракрасные светодиоды излучают в невидимой для глаза человека области спектра, и потому для обозначения их главных параметров используют несколько отличные от обычных лед-элементов характеристики:

  1. Мощность за период времени или с конкретной площади излучателя.
  2. Интенсивность в границах определенного пространственного угла.

Существуют десятки модификаций инфракрасных светодиодов. Все они различаются не только по силе излучения, но также назначению и форм-фактору. Чем мощнее лед-кристалл, тем больше он нагревается и разрушается. Поэтому производители при изготовлении мощных моделей прибегают к некоторым ухищрениям, а не идут по пути прямого увеличения их размеров. Сфера применения ИК-диодов обширна – от индикации в пультах ДУ бытовой техники до сложных военно-промышленных и медицинских приборов.

Если вы владеете информацией о том, какие еще инфракрасные светодиоды существуют и где они применяются, обязательно напишите об этом в комментариях.