Ик-термометр своими руками

Бесконтактный термометр: как сделать инфракрасный градусник своими руками?

Главная страница » Бесконтактный термометр: как сделать инфракрасный градусник своими руками?

Не только для медицинского измерения температуры нужен градусник без контакта. На практике отладки схем электроники, тестирования новых конструкций аппаратного обеспечения и т.п. может успешно применяться бесконтактный термометр. Сильно нагревающиеся электронные компоненты, в таком случае, проверяются без риска получения ожога.

Основа инфракрасного бесконтактного градусника

Аппарат такого типа, конечно же нужен каждому электронщику. И было бы правильным говорить, что настоящий электронщик всегда испытывает желание сделать электронику своими руками, в том числе технический градусник. Поэтому рассмотрим тему – как сделать бесконтактный термометр своими руками на основе инфракрасного сенсора.

Своего рода «тепловую пушку» доступно построить своими руками на базе популярного набора «Arduino». Схема построения требует применения бесконтактного измерительного модуля температуры типа MLX90614.

Благодаря этому устройству, прибор успешно подходит не только для измерения температуры компонентов электронных схем, но также для контроля температуры тела живых организмов.

Один из вариантов исполнения измерительного и преобразующего модуля MLX90614, который необходим для изготовления своими руками электронного инфракрасного градусника

Кроме того, созданный своими руками бесконтактный термометр достаточно точно измеряет температуру:

  • различных поверхностей,
  • воздушных потоков вентиляции,
  • режимов и деталей систем кондиционирования,
  • частей автомобильных и других двигателей.

Собственно, бесконтактные термометры широким ассортиментом доступны на коммерческом рынке. Однако цена таких устройств, но главное – творческий интерес, заставляют любителя электронщика применить собственные руки для изготовления градусника.

Что нужно для создания бесконтактного термометра?

Рассмотрим в подробностях, какие электронные компоненты и прочие комплектующие потребуются для самостоятельного производства бесконтактного инфракрасного градусника. Список нужных составляющих следующий:

  1. Набор конструктора электронщика «Arduino Pro».
  2. Модуль измерительный инфракрасный MLX90614.
  3. Контроллер SSD1306 информационного дисплея.
  4. Лазерный диод.
  5. Батарея питания (крона) на 9 вольт.
  6. Кнопка без фиксации
  7. Клемма контактор для кроны.
  8. Соединительные проводники.

Модуль измерительный MLX90614 — продукт «Melexis Microelectronics», представляет композицию двух устройств. Одним устройством выступает инфракрасный термический сенсор, другим — устройство обработки сигналов DSP (вычислительный элемент).

Модуль измерительный бесконтактного термометра работает на принципах закона Стефана-Больцмана. Согласно этому закону, все объекты излучают инфракрасную энергию. Причём интенсивность энергии прямо пропорциональна температуре объекта.

Чувствительный элемент модуля измеряет количество ИК-энергии, излучаемой целевым объектом. В свою очередь, вычислительный модуль преобразует полученное значение 17-разрядным АЦП и выводит уже данные температуры через протокол связи I2C.

Модулем измеряется как температуру объекта, так и температура окружающей среды для калибровки бесконтактного термометра. Характеристики измерительного модуля типа MLX90614 приведены в техническом описании (datasheet MLX90614).

Эффективное расстояние между сенсором и объектом

Одной из важнейших технических характеристик бесконтактного термометра является оптимальная величина расстояния между датчиком и объектом, в границах которой получается точный результат измерений.

Значение этого расстояния, как правило, напрямую связано с техническим термином «Поле зрения» (FOV). Так вот для постройки бесконтактного термометра своими руками используется датчик, значение FOV которого около 80°.

Так называемое «поле зрения» инфракрасного сенсора, которым определяется степень чувствительности объекта с точки зрения точного определения температуры

Если применить графику, диапазон чувствительности устройства логично отобразить конической формой, конус которой расширяется по мере удаления от точки восприятия датчика. Соответственно, по мере удаления от измерительного объекта зона чувствительности прибора увеличивается вдвое.

Таким образом, каждый 1 см удаления бесконтактного термометра от контрольного объекта приводит к увеличению зоны чувствительности на 2 см и как результат — к снижению точности измерения.

Практика применения самодельного бесконтактного термометра показала оптимальное расстояние от объекта не более 2 см.

Конструкция бесконтактного термометра своими руками предполагает размещение лазерного диода недалеко от сенсора, чтобы контролировать направленность и чувствительную область датчика.

Принципиальная схема самодельного инфракрасного термометра

Электронная схема прибора относительно проста, не представляет особых сложностей для сборки своими руками.

Электронная схема включения набора Arduino как функционального элемента бесконтактного термометра: 1 – модуль Arduino Uno; 2 – измерительный модуль MLX90614

Фактически представленной схемой задействованы всего четыре функциональных линии, две из которых линии питания и другие две линии связи SDA и SQL. В составе схемы бесконтактного термометра под сборку своими руками используется минимум компонентов обвязки:

  • два постоянных резистора номиналом 4,7 кОм,
  • один постоянный конденсатор сглаживания номиналом 0,1 мкФ.
  • два готовых электронных модуля.

Соответственно, к модулю Arduino Uno подключается информационный дисплей – модуль SSD1306 OLED или аналогичный. Схему подключения этого модуля легко отыскать среди публикаций, рассматривающих работу с Arduino.

Какой необходим корпус под градусник своими руками?

Здесь фантазии электронщиков-любителей ограничиваются только лишь существующими возможностями и расходной ценой. Как правило, корпус бесконтактного термометра выглядит удобным и практичным, если сделан в образе пистолета.

Такую конструкцию комфортно удерживать в руках и направлять детектор на контрольный объект. Самодельный «пистолет» бесконтактного термометра допустимо изготовить из разных материалов. Удачно подходит:

  • пластик,
  • лёгкие металлы,
  • даже картон может стать подходящим материалом.

Пример корпуса бесконтактного термометра, сделанного своими руками, показан на картинке ниже:

Таким, примерно, достаточно эксклюзивным и оригинальным может выглядеть корпус самодельного бесконтактного термометра, внутри которого вмещаются все рабочие модули

Корпус прибора изготавливается не только с учётом размещения всех электронных модулей, но также с учётом размещения элемента питания, как правило, батареи типа «Крона».

Как запрограммировать Arduino на бесконтактный термометр?

Программирование модуля Arduino преследует цель получения значения температуры от измерительного модуля MLX90614 с последующим отображением на OLED-дисплее Arduino. Содержимое имеющегося программного кода упрощённое, благодаря разработанной библиотеке чтения данных MLX90614. Библиотека доступна для загрузки здесь.

Загруженная библиотека добавляется к Arduino IDE командой «Sketch -> Include Library -> Add .ZIP Library» с указанием месторасположения загруженного ZIP-файла.

Также потребуется выполнить инструкции по взаимодействию OLED дисплея с модулем Arduino, установить необходимые библиотеки для модуля дисплея OLED.

Код бесконтактного термометра под Arduino загружается внешним программатором TTL или аналогичным. Затем останется подать питание, нажать кнопку активации бесконтактного термометра. Если всё сделано правильно, лазерный луч отобразится на контрольном объекте, а температура объекта отобразится на OLED-экране.

При помощи информации: TheoryCircuit

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Инфракрасный термометр своими руками на MLX90614

Для изготовления нашего бесконтактного термометра будем использовать датчик-пирометр MLX90614 — это инфракрасный датчик, позволяющий определять температуру бесконтактным методом.

Такой датчик позволяет практически моментально считывать температуру тела, измеряя инфракрасное излучение объекта. Сейчас познакомимся с ним поближе и разберем работу в Bascom-AVR.

Для начала разберемся с тем, какие модификации датчика существуют.

Во-первых, они различаются по напряжению питания, бывают 3-х и 5-и вольтовые версии.

Во-вторых, различаются количеством сенсоров внутри датчика: бывают с одним сенсором и двумя:

Также есть версия датчика, в которой два сенсора, но показания с них суммируются и усредняются. Именно такой датчик и попал ко мне.

В-третьих, различие в угле обзора. Бывают, как на картинке выше, с открытым окном, у которых угол обзора стремится к 180°. А есть версии с уменьшенным до 35°, 10° и 5° углом. Я приобрел датчик с углом обзора 10°, но как оказалось ничего хитрого там нет, просто на корпус датчика запрессована черная трубка, обрезающая часть обзора. Поэтому можно брать открытые датчики, они дешевле, и уже самим приклеить трубочку. Но интересней было бы добавить пару линз, только найти такие, чтобы пропускали инфракрасное излучение наверно будет не просто.

Читайте также  Соединение плоских кабелей

Все датчики подключаются по стандартному интерфейсу I2C. Распиновка со стороны ножек.

На шине I2C датчик имеет настраиваемый адрес, по умолчанию отзывается на &hB4 (&b10110100) Для считывания температуры измеряемого объекта нужно обратится по адресу &h07 (&b00000111) для первого сенсора, и &h08 (&b00001000) для второго (если датчик имеет два отдельных сенсора).

Для моего варианта, в котором два сенсора объединены, показания считываются только с первого сенсора. Также датчик может измерить собственную температуру, ее значение хранится по адресу &h06 (&b00000110)

К слову об измеряемых температурах. Предел температур для измеряемого объекта составляет -70 ÷ 380 °C, а для самого датчика -40 ÷ 125°C.

Данные в датчике хранятся в сыром виде и занимают два байта, поэтому для перевода их в градусы Цельсия необходимо преобразование: поделить значение на 50 и затем вычесть из результата 273,15. Еще нужно учитывать одну особенность — датчик сперва отправляет младший байт, а затем старший. Поэтому полученные данные перед преобразованием приходится «переворачивать».

Выше схема на микроконтроллере ATmega8, показания будут выводиться на жк дисплей. Датчик у меня приехал в пятивольтовой версии, поэтому никаких преобразователей между ним и схемой не нужно. Только подтяжка резисторами к плюсу согласно стандарту протокола I2C

Программа в Bascom-AVR:

‘конфигурация дисплея
Config Lcd = 16 * 2
Config Lcdpin = Pin , Rs = Portb . 5 , E = Portb . 4 , Db4 = Portb . 3 , Db5 = Portb . 2 , Db6 = Portb . 1 , Db7 = Portb . 0

‘подключение датчика
Config Scl = Portc . 0
Config Sda = Portc . 1

Dim Value As Byte ‘принимаемый байт
Dim Temp As Single ‘температура
Dim Tempword As Word ‘вспомогательная переменная
Dim Irtemp As String * 8 ‘температура объекта
Dim Senstemp As String * 8 ‘температура датчика
Dim Cmd As Byte ‘команды для датчика

Cls
Cursor Off

Cmd = & B00000111 ‘адрес чтения температуры объекта
Gosub Read_mlx ‘опрашиваем датчик
Irtemp = Fusing ( temp , «##.##» )

Cmd = & B00000110 ‘адрес чтения температуры датчика
Gosub Read_mlx ‘опрашиваем датчик
Senstemp = Fusing ( temp , «##.##» )

Cls
Locate 1 , 1
Lcd «To » ; Irtemp ; «°C» ‘выводим температуру объекта
Lowerline
Lcd «Ts » ; Senstemp ; «°C» ‘выводим температуру датчика

Waitms 500

‘подпрограмма опроса датчика
Read_mlx :

I2cstart
I2cwbyte & B10110100 &nbsnbsp; ‘отправляем адрес датчика
I2cwbyte Cmd ‘отправляем команду с адресом

I2cstart
I2cwbyte & B10110101 ‘отправляем адрес датчика с битом чтения
I2crbyte Value , Ack ‘принимаем первый байт
Tempword = Value
Shift Tempword , Left , 8

I2crbyte Value , Ack ‘принимаем второй байт
Tempword = Tempword Or Value ‘складываем два байта

I2cstop ‘окончание опроса датчика

Rotate Tempword , Left , 8 ‘меняем местами два байта в переменной

Temp = Tempword * 0 . 02 ‘преобразование данных в температуру по Цельсию
Temp = Temp — 273 . 15

Программа выводит на дисплей две температуры. В верхней строке температуру измеряемого объекта, в нижней — температуру самого датчика.

Фото с экспериментов

Температура горячего чайника

Чайник только вскипел, но температура пластикового корпуса выше 80 не поднималась.

Температура в морозилке

А вот интересная картинка из даташита, показывающая погрешность датчика в зависимости от внешних факторов.
To — измеряемая температура объекта, Ts — температура окружающей среды

В ходе тестирования заметил одну особенность, для более точного измерения температуры, датчик нужно подносить как можно ближе, чтобы объект перекрывал весь угол обзора датчика. В общем датчик интересный и мне понравился.

Датчик недорого можно купить в Китае.

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:

  • Автоматическая западня для ловли птиц своими руками

Западня и боек

Одним из самых классических орудий лова является — западня. Как правило, все начинающие охотники-любители начинали именно с западни.

Но западня не только классическое орудие лова, она является универсальным автоматическим орудием лова. В принципе западня представляет собой небольшую клетку (обычно с куполом), к которой в рамках одной конструкции приделаны по бокам два небольших клеточных отсека с большими автоматически захлопывающимися дверцами.

Данный глушитель можно собрать без микросхемы. Понадобится только один транзистор n-p-n структуры и ещё несколько недорогих деталей. Подробнее…

Бывают случаи, когда морозильная камера сломалась, температура поднимается выше положенного, а мы об этом и знать не знаем. В неё не так часто мы заглядываем, как в холодильник, поэтому и не замечаем, как пропадают продукты.

Далеко не все морозильные камеры имеют звуковую аварийную сигнализацию.

Предлагаемая ниже простая схема поможет решить эту проблему.

Пирометр* своими руками (*прибор для бесконтактного измерения температуры тела)


Этот прибор мастер сделал по заказу местного департамента здравоохранения в связи с нехваткой в продаже промышленных приборов. Цель была сделать относительно недорогое и простое в сборке устройство.

Прибор работает на Arduino Nano использует ИК-датчик MLX90614. Эти датчики есть в нескольких версиях. Распространенная версия BAA имеет охват 90 градусов. Такой большой градус не подходит для целей измерения температуры тела человека. В своей самоделке мастер использует датчик с условным обозначением BCH. Такой датчик измеряет температуру под углом 12 градусов и позиционируется как более точный.

Шаг первый: лазерная резка
Корпус мастер вырезает из фанеры толщиной 3 мм. Для корпуса нужен лист 6 х 8 дюймов (15,24 х 20,32 см).

Файл для резки можно скачать ниже.
irtherm_v2.svg















Шаг четвертый: код
Прежде чем подключать питания не забудьте установить конденсатор 1 мкФ.
Если Arduino Nano имеет набор микросхем CH340 (фото 1), может потребоваться установить определенные драйверы. Маркировка чипа находится на нижней части платы. Драйвер и инструкции по его установке можно скачать здесь.

В зависимости от версии платы может потребоваться переключение между текущими версиями ATmega328P и ATmega328P old bootloader (фото 2). После успешной загрузки кода на экране должны отобразится данные с температурой (фото 4).




Код можно скачать ниже. Есть две версии кода, одна для показаний по Фаренгейту, вторая для Цельсия.
TouchlessIRThermometer_F.ino
TouchlessIRThermometer_c.ino

Шаг пятый: окончательный монтаж
После проверки работоспособности устройства мастер производит его окончательный монтаж на плате.







Шаг шестой: сборка
Теперь можно приступить к сборке устройства.

Мастер устанавливает *лазерный диод и фиксирует его термоклеем. Устанавливает батарейный разъем в рукоять. Устанавливает и фиксирует термоклеем ИК-датчик. Термоклеем фиксирует внутри корпуса Ардуино и экран.

*Лазерный диод служит для «прицеливания». Мастер не указал его спецификацию, но судя по комментарию к статье, это маломощный диод.












При измерении температуры необходимо как можно ближе поднести прибор к измеряемой поверхности. В идеале это 5-10 см. Как уже говорилось, ИК-датчик имеет угол измерения 12 градусов и основание этого треугольника должно, по возможности, полностью «находится» на измеряемом объекте.

Мастер предупреждает, что данное изделие не является медицинским оборудованием и его не следует использовать, как замену сертифицированным устройствам. Однако прибор довольно точно определяет температуру и может быть использован для целей раннего выявления лиц с высокой температурой, для и дальнейшего обследования.

Лазерный инфракрасный термометр Arduino

В этом проекте мы создадим цифровой лазерный инфракрасный термометр на основе Ардуино и в распечатанном 3D-корпусе.

Читайте также  Принцип работы электронного счетчика

Шаг 1. Вступление

Инфракрасные термометры широко используются для определения температуры поверхности объектов. Часто в технических системах или в электронной цепи повышение температуры является одним из первых признаков того, что что-то не так. Быстрая бесконтактная проверка с помощью инфракрасного термометра поможет понять, что происходит с температурой системы, что позволит отключить ее, прежде чем это приведет к необратимому повреждению.

Инфракрасное излучение — это просто еще один тип излучения, которое существует в электромагнитном спектре. Мы этого не видим, но если бы вы поместили руку рядом с чем-то горячим, например, с плитой, вы бы почувствовали воздействие инфракрасного излучения. Все объекты излучают энергию в виде инфракрасного излучения. Большинство ручных термометров используют линзы для фокусировки света от одного объекта на термобатарею, которая поглощает инфракрасное излучение. Чем больше инфракрасной энергии поглощается, тем больше она нагревается и уровень тепла преобразуется в электрический сигнал, который в конечном итоге преобразуется в показание температуры.

Я работал на трассе на днях, и у меня был компонент, который был очень горячим. Я хотел узнать его температуру, но, поскольку у меня не было инфракрасного термометра под рукой, то было принято решение создать свой собственный. Устройство будет иметь специальный 3D-корпус, который можно распечатать и собрать прямо у себя дома.

Это простой проект, который можно использовать как отличное введение в сенсоры, 3D дизайн или печать, электронику и программирование.

Шаг 2. Необходимые компоненты

Компоненты, необходимые для сборки нашего инфракрасного термометра Ардуино приведены ниже:

  1. Кнопка-переключатель
  2. Резисторы 5 кОм, 200 Ом
  3. 5В лазер
  4. Ардуино Нано
  5. Переключатель Вкл/Выкл
  6. Дисплей OLED 0,96″
  7. Датчик температуры GY-906 или датчик MLX90614 с соответствующими конденсаторами/резисторами
  8. Аккумулятор 9В
  9. 3D-принтер и нить (например, Hatchbox PLA)

Многие компоненты можно приобрести в большинстве интернет-магазинов.

Шаг 3. Инфракрасный датчик температуры GY-906

Я использовал датчик инфракрасного термометра GY-906, который является переходной платой для бесконтактного инфракрасного термометра MLX90614 от Melexis.

Выносная плата очень недорогая и ее легко интегрировать, поставляется с подтягивающими резисторами 10К для интерфейса I2C.

Подтягивающий резистор нужен, чтобы гарантировать на логическом входе, с которым соединён проводник, высокий (в первом случае) либо низкий (во втором случае) уровень в случаях:

  • проводник не соединён с логическим выходом;
  • присоединённый логический выход находится в высокоимпедансном состоянии;
  • когда разомкнут ключевой элемент на присоединённом логическом выходе, который устроен как открытый вывод ключевого элемента.

GY-906 поставляется с заводской калибровкой в диапазоне от -40 до +125 градусов по Цельсию для температуры датчика и от -70 до 380 градусов по Цельсию для температуры объекта. Точность этого датчика составляет примерно 0,5 градуса Цельсия.

Шаг 4. Электроника

Теперь, когда вы собрали все необходимые компоненты, пришло время начать сборку всего вместе. Я бы порекомендовал сначала подключить все на макете, а затем, как только все заработало, приступить к пайке.

Схема нашего устройства (нажмите на схему для увеличения):

Слева у нас есть наш лазер с токоограничивающим резистором 200 Ом, управляемый от цифрового выхода 5. Также есть стандартная кнопка, которая подключена между 5 В и цифровым входом 2. Есть подтягивающий резистор 5 кОм, чтобы когда переключатель разомкнут, на вход ничего не идет, а вместо этого устанавливается на 0 В.

Справа у нас есть основной выключатель, который соединяет нашу батарею 9 В с выводами VIN и GND на Arduino Nano. Дисплей OLED и инфракрасный датчик температуры GY-906 подключены к 3,3 В, а линии SDA подключены к A4, а SCL к A5. На дисплее и GY-906 уже есть подтягивающие резисторы на линиях I2C.

Шаг 5. Программирование

Нужно будет установить следующие библиотеки, чтобы код компилировался.

Программа постоянно считывает данные о температуре с MLX90614, но отображается на OLED только при нажатии кнопки триггера. Если нажать на курок, лазер также включается, чтобы помочь определить, какой объект измеряется.

Код для нашего инфракрасного термометра Ардуино ниже:

Шаг 6. Делаем 3D-корпус

Все создано в Fusion 360. В основании термометра есть место для батареи 9 В, переключателя Вкл/Выкл и спускового механизма (триггера), который представляет собой простую кратковременную кнопку. Крышка основания защелкивается на месте. Есть также пространство для прокладки проводки базовых компонентов в верхней части термометра.

Имеется отверстие для 0,96-дюймового OLED-дисплея и передняя часть на конце термометра для лазера и датчика MLX90614. Как лазер, так и датчик могут быть запрессованы в отверстие. Верхняя часть предназначена для Arduino Nano, и, честно говоря, я действительно недооценил количество проводов, необходимое для подключения в небольшом пространстве.

Все файлы можно скачать по этой ссылке.

Когда я вжал Arduino Nano в небольшое пространство, то потерял много проводов, поэтому в итоге я использовал клеевой пистолет, чтобы зафиксировать провода на месте, устанавливая Nano внутрь корпуса. Я всегда устанавливаю Arduino Nano в специальные держатели, на случай, если захочу использовать его для проектов позже, так что держатели заняли много дополнительного места, которое не понадобилось бы, если бы вы просто всё припаяли. Тем не менее, в конце концов, когда я все установил в корпус, то просто надавил на верхнюю крышку.

Теперь, когда у вас есть лазерный инфракрасный термометр, собранный и запрограммированный, пришло время проверить его!

Нажмите кнопку питания и подождите пока загрузится дисплей.

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Инфракрасный термометр на Arduino и MLX90614 своими руками

Сегодня вопрос измерения температуры стоит наиболее остро, нежели ранее. В связи со вспышкой коронавируса и общего ухудшения здоровья населения желательно измерять температуру тела как можно чаще с целью выявления заболевания на ранней стадии, причем для сторонних людей относительно возможного зараженного это делать лучше бесконтактным способом.

В этом проекте мы создадим бесконтактный ИК термометр используя Arduino и инфракрасный температурный датчик. Эта конструкция будет создана с использованием бесконтактного датчика температуры под названием MLX90614; следовательно, его можно использовать не только для измерения температуры тела, но также для измерения температуры компонентов, температуры поверхности, в системах вентиляции с подогревом и многого другого. Конечно, эти тепловые пистолеты легко доступны на рынке от известных производителей, таких как Fluke, Flir и т. д. но они довольно дорогие и, кроме того, интереснее, создавать свои собственные гаджеты.

Перед тем как приступить к проекту, важно знать, как работает датчик MLX90614. На рынке доступно много датчиков температуры, и мы широко используем датчики DHT11 и LM35 для многих применений, где необходимо измерять температуру воздуха. Но здесь для теплового пистолета нам нужен датчик, который мог бы измерять температуру конкретного объекта (не окружающей среды) без непосредственного контакта с объектом. Для этого у нас есть бесконтактные датчики температуры, которые используют лазер или ИК для расчета температуры объекта. MLX90614 – один из таких датчиков, который использует ИК-энергию для определения температуры объекта.

Читайте также  Виды соединения оптического кабеля

Датчик MLX90614 компанией Melexis Microelectronics, в него встроено два устройства: одно – инфракрасный термобатарея (датчик), а другое – устройство обработки сигналов DSP (вычислительный модуль). Он работает на основе закона Стефана-Больцмана, который гласит, что все объекты излучают инфракрасную энергию, и интенсивность этой энергии будет прямо пропорциональна температуре этого объекта. Чувствительный элемент в датчике измеряет, сколько ИК-энергии излучается целевым объектом, и вычислительный модуль преобразует ее в значение температуры с использованием встроенного 17-разрядного АЦП и выводит данные через протокол связи I2C. Датчик измеряет как температуру объекта, так и температуру окружающей среды для калибровки значения температуры объекта. Особенности датчика MLX90614 следующие.

  • Рабочее напряжение: от 3,6 В до 5 В
  • Диапазон температур объекта: от -70° C до 382,2° C
  • Диапазон температур окружающей среды: от -40° C до 125° C
  • Разрешение / Точность: 0,02° C

Одним из вопросов, на который технические характеристики не дают прямого ответа, является измерение расстояния между датчиком и объектом. Значение этого расстояния задается термином Поле зрения (FOV), для нашего датчика поле зрения составляет около 80°.

Диапазон чувствительности должен быть в конической форме от точки датчика, как показано выше. Таким образом, по мере удаления от измерительного объекта зона чувствительности увеличивается в два раза. То есть на каждый 1 см мы удаляемся от объекта, зона чувствительности увеличивается на 2 см. В нашем тепловом пистолете мы поместили лазерный диод на верхнюю часть датчика, чтобы знать, куда в данный момент направлена чувствительная область датчика. В ходе тестов обнаружено, что значения были достоверными, если пистолет удален на расстоянии 2 см от объекта, и по мере удаления точность снижается.

Принципиальная схема подключения компонентов инфракрасного термометра довольно проста и приведена далее.

Вся схема питается от батареи 9 В через кнопку. При нажатии кнопки батарея 9 В подключается к выводу RAW Arduino, который затем регулируется до 5 В с помощью встроенного регулятора напряжения. Эти 5 В затем используется для питания модуля OLED, датчика и лазерного диода.

Для упрощения конструирования корпуса термометра можно воспользоваться 3D моделью (https://www.thingiverse.com/thing:3706609).

Программа для Arduino должна прочитать значение температуры с MLX90614 и отобразить его на OLED-дисплее. К счастью для нас, программа будет очень простой, поскольку Adafruit предоставила нам библиотеку (https://github.com/sparkfun/SparkFun_MLX90614_Arduino_Library) для удобного чтения данных с MLX90614. Полный код инфракрасного термометра на Arduino представлен далее.

Как только код Arduino будет готов, мы можем загрузить его в наше оборудование с помощью внешнего программатора TTL или платы FTDI, поскольку у Arduino pro mini нет встроенного программатора. Затем просто нажмите кнопку, чтобы активировать тепловую пушку, и вы заметите, что лазерный луч падает на объект, а температура объекта отображается на OLED-экране, как показано на следующем изображении.

БЕСКОНТАКТНЫЙ ГРАДУСНИК

Почти год пользовался обычным электронным градусником, и не смотря на многие его достоинства, всё-таки сделал вывод о недостаточном удобстве такого прибора. Особенно при замере температуры у грудного ребёнка, который постоянно крутится и не даёт выдержать положенные пару минут, для чёткого определения температуры. Тут нужно действовать быстро. Поэтому вспомнив о китайском сайте Дилэкстрим, торгующем всякими электронными девайсами, в том числе и для таких целей, заказал за 20 долларов бесконтактный градусник. Размер его примерно как у толстого маркера.

Конечно сначала предполагал выйти и купить в ближайшей аптеке, чтоб не ждать месяц доставки, но обойдя все 5 центральных только в одной мне сказали «такого нету». В остальных смотрели и не понимали что я от них хочу и как такое устройство вообще может существовать в природе 🙂 Даже участковый педиатр увидев его посоветовала перейти на обычный ртутный стеклянный — мало ли что. Так и хочется процитировать Джея: Это пульс, а это палец — далеко от пульса, глубоко в заднице.

Итак, вернёмся на остриё технического прогресса. Бесконтактный термометр работает по принципу улавливания инфракрасного излучения тела. Прибор через линзы фокусирует энергию инфракрасного излучения объекта на датчик. Далее температура поверхности объекта преобразуется в электрический сигнал, который вычисляет микроконтроллер и отображает полученное значение температуры на дисплее.

Для измерения температуры объекта надо включить термометр (нажав на одну единственную на корпусе кнопку), подождать пока за 5 секунд он перейдёт в рабочий режим, и просто направьте на тело градусник и ещё раз кратковременно нажмите кнопку. На ЖК-дисплее сохранится показание результата измерения примерно на 10 секунд — до автовыключения прибора. Более подробно о принципе действия таких устройств читайте тут.

При снижении напряжения батареи ниже уровня необходимого для нормальной работы градусника на дисплее появится символ батареи. Это означает необходимость замены её на новую.

Возможности устройства

  • Быстрое, точное и бесконтактное измерение температуры тела на расстоянии до 3 см.
  • Бесконтактное измерение температуры других предметов: детского молока в бутылке, воды в ванной перед купанием ребенка, разных жидкостей, воздуха в помещении — от 0°С до 100°С.
  • Подходит для массового измерения температуры в больницах, школах и коллективах благодаря гигиеничности и скорости бесконтактного метода измерения.
  • Быстрое измерение — всего за пару секунд.
  • Изменение фонового цвета дисплея с зеленого на ярко красный и появление звукового сигнала при обнаружении повышенной температуры.
  • Цена такого электронного градусника — примерно 800р.

Ради интереса разобрал его, чтоб взглянуть на схему. Думаю многие любят изучать работу новых, интересных девайсов 🙂

Внутри всё просто — микросхема ИК-датчика, преобразующая сигнал в цифровой вид, и контроллер ЖК дисплея.

Батарейка круглая литиевая — на 3 вольта. Работает уже почти год при слава Богу редком использовании 🙂 До сих пор не села, что говорит о хорошей экономичности.

Подводя итог можно сказать, что прогресс в данном случае оказался на высоте — все остальные термометры можно сгребать в одну кучу и смело прятать в диван или сарай. Один раз использовав такое устройство, на обычный градусник переходить уже не захочется. А для точного измерения температуры шустрых и непоседливых детей — альтернативы нет вообще.

Форум по обсуждению материала БЕСКОНТАКТНЫЙ ГРАДУСНИК

Изучим теорию работы и проведём несколько опытов с 1N4148 — диодом быстрого переключения.

Умный аварийный резервный светодиодный источник света — простая схема автоматически включающейся LED подсветки.

Современная беспроводная связь — эволюция приёмо-передающей аппаратуры и внедрение цифровой обработки данных.