Цепь с параллельным соединением нескольких ветвей

Особенности параллельной цепи, как это работает, как это сделать и примеры

параллельная цепь это та схема, в которой электрический ток распределяется по разным ветвям через сборку. В этих цепях элементы расположены параллельно; то есть терминалы соединены между равными: положительным с положительным и отрицательным с отрицательным.

Таким образом, напряжение в каждом параллельном элементе является одинаковым во всей конфигурации. Последовательная схема состоит из нескольких циркуляционных сеток, которые образуются при наличии узлов. В каждой вилке сила тока делится в соответствии с потребностью в энергии подключенных нагрузок..

  • 1 Характеристики
    • 1.1 Клеммы элементов соединены параллельно
    • 1.2 Напряжение одинаково между всеми клеммами параллельно
    • 1.3 Общая интенсивность цепи является суммой токов всех ветвей
    • 1.4. Инверсия полного сопротивления цепи является суммой инверсии всех сопротивлений.
    • 1.5 Компоненты цепи независимы друг от друга
  • 2 Как это работает?
  • 3 Как это сделать?
  • 4 примера
  • 5 ссылок

черты

Этот тип схемы имеет параллельное соединение, что подразумевает определенные внутренние свойства этого типа схем. Основные характеристики параллельных цепей описаны ниже:

Клеммы элементов соединены параллельно

Как видно из названия, соединения всех приемников совпадают на своих входных и выходных клеммах. Это означает, что положительные клеммы соединены друг с другом, так же, как отрицательные клеммы.

Напряжение одинаково между всеми клеммами параллельно

Все компоненты цепи, которые соединены параллельно, подвергаются одинаковому уровню напряжения. То есть напряжение между вертикальными узлами всегда одинаково. Таким образом, уравнение, выражающее эту характеристику, является следующим:

При параллельном подключении батарей или батарей они поддерживают один и тот же уровень напряжения между узлами, при условии, что соединение полярности (положительное-положительное, отрицательное-отрицательное) является подходящим.

Преимущество этой конфигурации — равномерное потребление батарей, составляющих цепь, благодаря чему срок службы каждой батареи должен быть значительно выше..

Общая интенсивность цепи является суммой токов всех ветвей

Ток делится на все узлы, которые он пересекает. Таким образом, общий ток системы является суммой всех бифуркационных токов..

Инверсия полного сопротивления цепи является суммой инверсии всех сопротивлений

В этом случае сумма всех сопротивлений задается следующим алгебраическим выражением:

Пока к цепи подключено большее количество резисторов, эквивалентное общее сопротивление системы будет ниже; и если сопротивление уменьшается, то интенсивность общего тока выше.

Компоненты схемы независимы друг от друга

Если какой-либо из узлов схемы разорван или некоторые электронные компоненты расплавлены, остальная часть схемы продолжит работу с подключенными ответвлениями, которые остаются подключенными.

В свою очередь, параллельное соединение облегчает независимую активацию или разъединение каждой ветви цепи, без необходимости затрагивая остальную часть сборки..

Как это работает?

Параллельная схема работает путем подключения одного или нескольких источников питания, которые могут быть подключены параллельно и обеспечивать электроэнергию для системы.

Электрический ток циркулирует по цепи и раздваивается через узлы сборки — через различные ветви — в зависимости от потребности в энергии компонентов, расположенных в каждой ветви.

Основным преимуществом параллельных цепей является надежность и надежность системы, потому что, если одна из ветвей отключена, другие продолжают работать, пока у них есть источник питания..

Этот механизм делает параллельные схемы чрезвычайно рекомендованными в сложных приложениях, где необходимо иметь механизм резервного копирования, чтобы гарантировать работу системы в целом..

Как это сделать?

Сборка параллельной цепи является более сложной по сравнению с последовательной цепью, учитывая множественность ответвлений и осторожность, которую необходимо соблюдать при подключении клемм (+/-) каждого элемента..

Однако воспроизвести монтаж такого рода будет непросто, если вы будете следовать следующим инструкциям к письму:

1- Поместите деревянную доску в качестве основы схемы. Этот материал предлагается с учетом его диэлектрических свойств..

2- Найдите батарею цепи: прикрепите стандартную батарею (например, 9 В) к основанию цепи с помощью изолирующей клейкой ленты..

3- Поместите переключатель рядом с положительной полярностью батареи. Таким образом, вы можете активировать или прервать прохождение тока по цепи, отключив источник питания..

4- Установите два патрона параллельно батарее. Лампочки, соединенные в этих элементах, будут действовать как резисторы цепи.

5- Подготовьте проводники цепи, обрезая кабели в соответствии с расстояниями между элементами цепи. Важно удалить покрытие проводника с обоих концов, чтобы обеспечить прямой медный контакт с клеммами каждого приемника..

6- Выполните соединения между компонентами цепи.

7. Наконец, используйте переключатель, чтобы проверить освещение ламп и, следовательно, правильную работу цепи..

примеров

Подавляющее большинство бытовых применений, таких как внутренние контуры стиральной машины или системы отопления, представляют собой точно параллельные контуры.

Жилые системы освещения также подключены параллельно. Вот почему, если у нас в светильнике несколько лампочек, одна из которых горит и выходит из строя, остальные лампочки могут поддерживать свою работу..

Параллельные соединения позволяют независимо подключать несколько штекеров, позволяя пользователям выбирать, что подключать, а что нет, поскольку необходимо, чтобы все приложения были включены одновременно.

Параллельные цепи идеально подходят для бытовых и бытовых применений, так как они поддерживают уровень напряжения между всеми узлами цепи.

Это гарантирует, что оборудование, работающее при определенном напряжении (110 В — 220 В), будет иметь уровень напряжения, необходимый для удовлетворительной работы.

1. Введение

Цель работы – исследование распределения токов, напряжений и мощностей при различных способах соединения пассивных элементов.

2. теория

2.1. Последовательное соединение

Последовательным называется соединение, когда конец одного элемента соединяется с условным началом второго, конец второго – с началом третьего и т.д.

Рис. 2.1. Последовательное соединение

Для последовательного соединения характерным является общий ток.

Напряжение на отдельных элементах распределяется пропорционально величинам их сопротивлений:

Суммарная мощность приемников:

2.2. Параллельное соединение

Параллельным называется такое соединение, при котором соединяются вместе начала приемников и, соответственно, их концы. Напряжение подается на начало и концы.

Рис. 2.2. Параллельное соединение

При параллельном соединении элементы находятся под одним и тем же напряжением – напряжением питающей сети.

Эквивалентное соединение определяется из выражения:

или

,

где — проводимость элемента.

Токи в ветвях распределяются обратно пропорционально сопротивлениям элементов:

,

,

2.3. Смешанное соединение

Смешанным называется такое соединение, при котором имеют место и последовательное, и параллельное соединение элементов.

Рис. 2.3. Смешанное соединение элементов

Для схемы 2.3 справедливы отношения:

, ;

;

, , ;

3. Оборудование

3.1. Активные клавиши

Для работы в этой лабораторной работе применяются следующие клавиши:

W, S, A, D – для перемещения в пространстве;

F2, E – аналоги средней клавиши манипулятора (при первом нажатии берется объект, при последующем – ставится);

F10 – выход из программы.

Рис. 3.1. Активные клавиши клавиатуры

Рис. 3.2. Функции манипулятора

Левая клавиша мыши (1) — при нажатии и удерживании обрабатывается (поворачивается, переключается) тот или иной объект.

Средняя клавиша (2) — при первом нажатии (прокрутка не используется) берется объект, при последующем – ставится (прикрепляется).

Правая клавиша (3) — появляется курсор–указатель (при повторном — исчезает).

Примечание: При появившемся курсоре невозможно перевести взгляд вверх и стороны.

3.2. Оборудование для лабораторной работы

Рис. 3.3. Стенд лабораторный

Рис. 3.4. Одно из регулируемых сопротивлений

Рис. 3.5. Горизонтальная панель

1 – кнопка магнитного пускателя стенда; 2 – кнопка подачи постоянного напряжения одного из источников питания; 3 – регулятор одного из источников питания (ЛАТР)

4. Порядок выполнения работы

Смысл лабораторной работы заключается в проверке закона Ома для последовательного, параллельного и смешанного соединения сопротивлений.

4.1. Стартовое положение

В лаборатории находится стенд для проведения испытания, состоящий из вертикальной и горизонтальной панели.

Вертикальная панель содержит элементы схем и разделена на 3 зоны, по количеству проводимых опытов (последовательное, параллельное и смешанное). Линиями синего и красного цвета изображены провода составляющие схему.

На схемах присутствуют элементы управления – регулируемого сопротивления Возле каждого из них есть подпись – 150 Ом. Изменение сопротивления происходит за один оборот (360 0 ) — от 0 до 150 Ом.

На горизонтальной панели есть 3 источника питания (от 0 до 220 В) постоянного тока, регулировка напряжения осуществляется при помощи поворотного регулятора (ЛАТР). Чтобы включить источник питания в работу необходимо:

· включить сеть стенда;

· включить кнопку под лампочкой соответствующего источника питания (рис. 3.5 — 2).

4.2. Последовательное соединение. Опыт №1

На стенде собрана цепь по схеме 4.1.

Рис. 4.1. Схема проведения опыта №1

1. Включите стенд. Рукоятку ЛАТРа установите в крайнее левое положение, при котором В.

Читайте также  Как рассчитать привод для ворот?

2. Нажмите на кнопку подачи постоянного напряжения соответствующего источника питания.

3. Поворачивая рукоятку ЛАТРа по часовой стрелке, установите напряжение В. Потенциометр полностью введен.

4. Снимите показания приборов и занесите в таблицу 4.1.

5. При том же напряжении источника питания уменьшите сопротивление потенциометра примерно вполовину и снова снимите показания всех приборов.

6. Произведите расчет всех параметров, указанных в таблице 4.1.

,

,

,

,

,

,

,

,

,

,

Последовательное и параллельное соединение

Последовательное и параллельное соединение очень широко используется в электронике и электротехнике и порой даже необходимо для правильной работы того или иного узла электроники. И начнем, пожалуй, с самых простых компонентов радиоэлектронных цепей – проводников.

Для начала давайте вспомним, что такое проводник? Проводник – это вещество или какой-либо материал, который отлично проводит электрический ток. Если какой-либо проводник отлично проводит электрический ток, то он в любом случае обладает каким-либо сопротивлением. Сопротивление проводника мы находим по формуле:

ρ – это удельное сопротивление, Ом × м

R – сопротивление проводника, Ом

S – площадь поперечного сечения, м 2

l – длина проводника, м

Более подробно об этом я писал здесь.

Следовательно, любой проводник представляет из себя резистор с каким-либо сопротивлением. Значит, любой проводник можно нарисовать так.

Последовательное соединение проводников

Сопротивление при последовательном соединении проводников

Последовательное соединение проводников – это когда к одному проводнику мы соединяем другой проводник и так по цепочке. Это и есть последовательное соединение проводников. Их можно соединять с друг другом сколь угодно много.

последовательное соединение резисторов

Чему же будет равняться их общее сопротивление? Оказывается, все просто. Оно будет равняться сумме всех сопротивлений проводников в этой цепи.

Получается, можно записать, что

формула при последовательном соединении резисторов

Пример

У нас есть 3 проводника, которые соединены последовательно. Сопротивление первого 3 Ома, второго 5 Ом, третьего 2 Ома. Найти их общее сопротивление в цепи.

Решение

То есть, как вы видите, цепочку из 3 резисторов мы просто заменили на один резистор RAB .

показать на реальном примере с помощью мультиметра
Видео где подробно расписывается про эти соединения:

Сила тока через последовательное соединение проводников

Что будет, если мы подадим напряжение на концы такого резистора? Через него сражу же побежит электрический ток, сила которого будет вычисляться по закону Ома I=U/R.

Получается, если через резистор RAB течет какой-то определенный ток, следовательно, если разложить наш резистор на составляющие R1 , R2 , R3 , то получится, что через них течет та же самая сила тока, которая текла через резистор RAB .

сила тока через последовательное соединение проводников

Получается, что при последовательном соединении проводников сила тока, которая течет через каждый проводник одинакова. То есть через резистор R1 течет такая же сила тока, как и через резистор R2 и такая же сила тока течет через резистор R3 .

Напряжение при последовательном соединении проводников

Давайте еще раз рассмотрим цепь с тремя резисторами

Как мы уже знаем, при последовательном соединении через каждый резистор проходит одна и та же сила тока. Но вот что будет с напряжением на каждом резисторе и как его найти?

Оказывается, все довольно таки просто. Для этого надо снова вспомнить закон дядюшки Ома и просто вычислить напряжение на любом резисторе. Давайте так и сделаем.

Пусть у нас будет цепь с такими параметрами.

Мы теперь знаем, что сила тока в такой цепи будет везде одинакова. Но какой ее номинал? Вот в чем загвоздка. Для начала нам надо привести эту цепь к такому виду.

Получается, что в данном случае RAB =R1 + R2 + R3 = 2+3+5=10 Ом. Отсюда уже находим силу тока по закону Ома I=U/R=10/10=1 Ампер.

Половина дела сделано. Теперь осталось узнать, какое напряжение падает на каждом резисторе. То есть нам надо найти значения UR1 , UR2 , UR3 . Но как это сделать?

Да все также, через закон Ома. Мы знаем, что через каждый резистор проходит сила тока 1 Ампер, мы уже вычислили это значение. Закон ома гласит I=U/R , отсюда получаем, что U=IR.

Теперь начинается самое интересное. Если сложить все падения напряжений на резисторах, то можно получить… напряжение источника! Он у нас равен 10 Вольт.

Мы получили самый простой делитель напряжения.

Вывод: сумма падений напряжений при последовательном соединении равняется напряжению питания.

Параллельное соединение проводников

Параллельное соединение проводников выглядит вот так.

параллельное соединение резисторов

Ну что, думаю, начнем с сопротивления.

Сопротивление при параллельном соединении проводников

Давайте пометим клеммы как А и В

В этом случае общее сопротивление RAB будет находиться по формуле

Если же мы имеем только два параллельно соединенных проводника

То в этом случае можно упростить длинную неудобную формулу и она примет вид такой вид.

Напряжение при параллельном соединении проводников

Здесь, думаю ничего гадать не надо. Так как все проводники соединяются параллельно, то и напряжение у всех будет одинаково.

Получается, что напряжение на R1 будет такое же как и на R2, как и на R3, так и на Rn

Сила тока при параллельном соединении проводников

Если с напряжением все понятно, то с силой тока могут быть небольшие затруднения. Как вы помните, при последовательном соединении сила тока через каждый проводник была одинакова. Здесь же совсем наоборот. Через каждый проводник будет течь своя сила тока. Как же ее вычислить? Придется опять прибегать к Закону Ома.

Чтобы опять же было нам проще, давайте рассмотрим все это дело на реальном примере. На рисунке ниже видим параллельное соединение трех резисторов, подключенных к источнику питания U.

Как мы уже знаем, на каждом резисторе одно и то же напряжение U. Но будет ли сила тока такая же, как и во всей цепи? Нет. Поэтому для каждого резистора мы должны вычислить свою силу тока по закону Ома I=U/R. В результате получаем, что

Если бы у нас еще были резисторы, соединенные параллельно, то для них

В этом случае, сила тока в цепи будет равна:

Задача

Вычислить силу тока через каждый резистор и силу тока в цепи, если известно напряжение источника питания и номиналы резисторов.

Решение

Воспользуемся формулами, которые приводили выше.

Если бы у нас еще были резисторы, соединенные параллельно, то для них

Далее, воспользуемся формулой

чтобы найти силу тока, которая течет в цепи

2-ой способ найти I

Чтобы найти Rобщее мы должны воспользоваться формулой

Чтобы не париться с вычислениями, есть онлайн калькуляторы. Вот один из них. Я за вас уже все вычислил. Параллельное соединение 3-ех резисторов номиналом в 2, 5, и 10 Ом равняется 1,25 Ом, то есть Rобщее = 1,25 Ом.

I=U/Rобщее = 10/1,25=8 Ампер.

Параллельное соединение резисторов в электронике также называется делителем тока, так как резисторы делят ток между собой.

Ну а вот вам бонусом объяснение, что такое последовательное и параллельное соединение проводников от лучшего преподавателя России.

Расчет цепей с параллельным соединением ветвей

Расчет электрической цепи, рассмотренный в предыдущей статье, можно распространить на цепи, содержащие произвольное число приемников, соединенных параллельно.

На рис. 14.14, а параллельно соединены те же элементы цепи, которые были рассмотрены при последовательном соединении (см. рис. 14.7, а). Предположим, что для этой цепи известны напряжение u = Umsinωt . и параметры элементов цепи R, L, С. Требуется найти токи в цепи и мощность.

Векторная диаграмма для цепи с параллельным соединением ветвей. Метод векторных диаграмм

Для мгновенных величин в соответствии с первым законом Кирхгофа уравнение токов

Представляя ток в каждой ветви суммой активной и реактивной составляющих, получим

Для действующих токов нужно написать векторное уравнение

Численные значения векторов токов определяются произведением напряжения и проводимости соответствующей ветви.

На рис. 14.14, б построена векторная диаграмма, соответствующая этому уравнению. За исходный вектор принят, как обычно при расчете цепей с параллельным соединением ветвей, вектор напряжения U, а затем нанесены векторы тока в каждой ветви, причем направления их относительно вектора напряжения выбраны в соответствии с характером проводимости ветвей. Начальной точкой при построении диаграммы токов выбрана точка, совпадающая с началом вектора напряжения. Из этой точки проведен вектор l1a активного тока ветви I (по фазе совпадает c напряжением), а из конца его проведен вектор I1p реактивного тока той же ветви (опережает напряжение на 90°). Эти два вектора являются составляющими вектора I1 тока первой ветви. Далее в том же порядке отложены векторы токов других ветвей. Следует обратить внимание на то, что проводимость ветви 3-3 активная, поэтому реактивная составляющая тока в этой ветви равна нулю. В ветвях 4-4 и 5-5 проводимости реактивные, поэтому в составе этих токов нет активных составляющих.

Читайте также  Коробки для ламп дневного света

Расчетные формулы для цепи с параллельным соединением ветвей. Метод векторных диаграмм

Из векторной диаграммы видно, что все активные составляющие векторов тока направлены одинаково — параллельно вектору напряжения, поэтому векторное сложение их можно заменить арифметическими найти активную составляющую общего тока: Iа = I1a + I2a + I3a.

Реактивные составляющие векторов токов перпендикулярны вектору напряжения, причем индуктивные токи направлены в одну сторону, а емкостные — в другую. Поэтому реактивная составляющая общего тока в цепи определяется их алгебраической суммой, в которой индуктивные токи считаются положительными, а емкостные — отрицательными: Ip = — I1p + I2p — I4p + I5p.

Векторы активного, реактивного и полного тока всей цепи образуют прямоугольный треугольник, из которого следует

Подставив величины токов в ветвях, выраженные через напряжение и соответствующие проводимости, получим

где ∑Gnобщая активная проводимость, равная арифметической сумме активных проводимостей всех ветвей; ∑Bn общая реактивная
проводимость, равная алгебраической сумме реактивных проводимостей всех ветвей (в этой сумме индуктивные проводимости считаются положительными, а емкостные — отрицательными); Y — полная проводимость цепи;

Таким образом получена знакомая уже формула (14.12), связывающая напряжение, ток и проводимость цепи [ср. (14.12) и (14.8)].

Следует обратить внимание на возможные ошибки при определении полной проводимости цепи по известным проводимостям отдельных ветвей: нельзя складывать арифметически проводимости ветвей, если токи в них не совпадают по фазе.

Полную проводимость цепи в общем случае определяют как гипотенузу прямоугольного треугольника, катетами которого являются выраженные в определенном масштабе активная и реактивная проводимости всей цепи:

От треугольника токов можно перейти также к треугольнику мощностей и для определения мощности получить известные уже формулы

Активную мощность цепи можно представить как арифметическую сумму активных мощностей ветвей.

Реактивная мощность цепи равна алгебраической сумме мощностей ветвей. В этом случае индуктивная мощность берется положительной, а емкостная — отрицательной:

Расчет цепи без определения проводимостей ветвей

Расчет электрической цепи при параллельном соединении ветвей можно выполнить без предварительного определения активных и реактивных проводимостей, т. е. представляя элементы цепи в схеме замещения их активными и реактивными сопротивлениями (рис. 14.15, а).

Определяют токи в ветвях по формуле (14.4);

где Z1, Z2 и т. д. — полные сопротивления ветвей.

Полное сопротивление ветви, в которую входят несколько элементов, соединенных последовательно, определяют по формуле (14.5).

Для построения векторной диаграммы токов (рис. 14.15, б) можно определить активную и реактивную составляющие тока каждой ветви по формулам

и т. д. для всех ветвей.

В этом случае отпадает необходимость определения углов ф1 ф2 и построения их на чертеже.

Ток в неразветвленной части цепи

Общий ток и мощность цепи определяются далее в том же порядке, какой был показан ранее (см. формулы (14.10), (14.15), (14.16)].

Последовательное и параллельное соединение. Применение и схемы

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Читайте также  Соединение сшитого полиэтилена с коллектором
Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:
  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Параллельное соединение резисторов. Калькулятор для расчета

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Параллельное соединение резисторов — расчет

Пример №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:


Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.
Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Правило Кирхгофа гласит: «Общий ток, входящий в цепь равен току выходящему из цепи».

Таким образом, протекающий общий ток в цепи можно определить как:

Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:

Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА

Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА

Таким образом, общий ток будет равен:

I = 0,545 мА + 0,255 мА = 0,8 мА

Это также можно проверить, используя закон Ома:

I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)

где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)

И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора, входящего в параллельное соединение.