Амперметр на светодиодах своими руками

Амперметр своими руками

Привет всем любителям самоделок. В данной статье я расскажу, как сделать амперметр своими руками, в сборке которой поможет кит-набор, ссылка на него будет в конце статьи. Данный амперметр пригодится для различных самоделок, где нужно контролировать ампераж. Корпус радиоконструктора выполнен специально с защелками для установки на щиток или панель, что является несомненным плюсом.

Перед прочтением статьи предлагаю посмотреть видеоролик с подробным процессом сборки и проверкой в работе кит-набора.

Для того, чтобы сделать амперметр своими руками, понадобится:
* Кит-набор
* Паяльник, флюс, припой
* Мультиметр
* Приспособление для пайки «третья рука»
* Крестовая отвертка
* Бокорезы

Шаг первый.
Весь монтаж будет производиться на печатной плате, на которой нанесена маркировка всех компонентов, так что в данном случае инструкция не нужна, само качество изготовления платы на высоком уровне, также она имеет металлизированные отверстия.

Разобравшись с комплектом кит-набора, переходим непосредственно к сборке.

Шаг второй.
Первым делом на плату устанавливаем резисторы. Для установки резисторов необходимо измерить их номиналы, сделать это можно при помощи мультиметра, цветовой маркировки с справочной таблицей или онлайн-калькулятора. Определив сопротивление каждого резистора, устанавливаем их на свои места, согласно маркировке на плате, с обратной стороны загинаем выводы, чтобы при пайке детали не выпали.

После установки резисторов переходим к конденсаторам, устанавливаем полярные и неполярные конденсаторы, полярные ставим с соблюдением полярности, плюс это длинная ножка, минус-короткая, также минус на плате обозначен заштрихованным полукругом.

Керамические неполярные конденсаторы вставляем согласно цифровой маркировке на их корпусе и на самой плате. Далее вставляем диоды, на плате один их них выделен жирной полоской, которая также нанесена черным на корпусе диода, остальные три все одинаковые и перепутать их не получится, а затем ставим индуктивность.






Вот и готов кит-набор, теперь его можно проверить в действии.

Шаг пятый.
Чтобы проверить данный радиоконструктор необходимо подсоединить провода к питанию, для этого будет достаточно аккумуляторной батареи типа 18650, а тестируемое устройство подсоединяем в разрыв к входу прибора.



Подключать можно различные устройства для проверки потребления тока, чтобы откалибровать измерения имеется подстроечный резистор. Данный кит-набор пригодится для тех, кто хочет сделать что-то электронное, где необходим вывод информации в реальном времени, например, потребление тока электродвигателя. Также данная сборка будет полезна начинающим радиолюбителям, которые хотят попробовать себя в радиоэлектронике.

На этом у меня все, всем спасибо за внимание и творческих успехов.

Амперметр на светодиодах своими руками (схема)

Цифровой амперметр на светодиодах – удобный способ отображения информации, при котором имеет значение не только модуль измеряемой величины (что, кстати, значительно удобнее определять не по отклонению стрелочного индикатора, а по величине столбчатой диаграммы, или при помощи мини-дисплея), но и частоту изменения этого параметра.

Описание схемы

Светодиоды не отличаются большой мощностью, но использовать их в слаботочных электрических цепях допустимо и целесообразно. В качестве примера можно рассмотреть схему получения цифрового амперметра для определения силы тока в аккумуляторной батарее автомобиля, при номинальном диапазоне значений в 40…60 мА.

Количество использованных светодиодов определит пороговое значение тока, при котором в работу будет включаться один из светодиодов. В качестве операционного усилителя можно использовать LM3915, либо подходящий по параметрам микроконтроллер. На вход будет подаваться напряжение через любой низкоомный резистор.

Удобно отражать результаты измерения в виде столбчатой диаграммы, где весь, практически используемый диапазон тока будет разделяться на несколько сегментов по 5…10 мА. Плюсом LED является то, что в схеме можно использовать элементы разного цвета – красного, зелёного, синего и т.д.

Для работы цифрового амперметра потребуются следующие компоненты:

  1. Микроконтроллер типа PIC16F686 с АЦП на 16 бит.
  2. Настраиваемые джамперы для выхода конечного сигнала. Можно, как альтернативу, применить DIP-переключатели, которые используются в качестве электронных шунтов или сигнальных замыканий в обычных электронных цепях.
  3. Источник питания постоянного тока, который рассчитан на рабочее напряжение от 5 до 15 В (при наличии стабильного напряжения, что контролируется вольтметром, подойдёт и 6 В).
  4. Контактная плата, где можно разместить до 20 светодиодов типа SMD.

Электрическая схема амперметра на LED источниках

Последовательность размещения и монтажа амперметра

Входной сигнал по току (не более 1 А) подаётся от стабилизированного блока питания через шунтирующий резистор, допустимое напряжение на котором не должно быть более 40…50 В. Далее, проходя через операционный усилитель, сигнал поступает на светодиоды. Поскольку значение тока во время прохождения сигнала изменяется, то соответственно будет изменяться и высота столбика. Управляя током нагрузки, можно регулировать высоту диаграммы, получая результат с различной степенью точности.

Монтаж платы с SMD-компонентами, по желанию пользователя, можно размещать либо горизонтально, либо вертикально. Смотровое окошко перед началом тарировки необходимо перекрывать тёмным стеклом (подойдёт фильтр с кратностью 6…10 х от обычной сварочной маски).

Тарировка цифрового амперметра состоит в подборе минимального значения нагрузки по току, при которой светодиод будет светиться. Варьирование настройки производится экспериментально, для чего в схеме предусматривается резистор с небольшим (до 100 мОм) сопротивлением. Погрешность показаний такого амперметра обычно не превышает нескольких процентов.

Вы знали, что можно переделать старый вольтметр в амперметр? Как это сделать — смотрите видео:

Как настраивать регулировочный резистор

Для этого последовательно устанавливают силу тока, которая проходит через определённый светодиод. В качестве контрольного прибора можно использовать обычный тестер. Вольтметр включается в схему перед микроконтроллером, а амперметр – после него. Для исключения влияния случайных пульсаций подключается также сглаживающий конденсатор.

Практическим плюсом изготовления прибора своими руками (светодиодов не должно быть менее четырёх) является устойчивость схемы при значительных изменениях первоначально заданного диапазона силы тока. В отличие от обычных диодов, которые при коротком замыкании выйдут из строя, светодиоды просто не загораются.

Св-диоды как измерители тока в аккумуляторной батарее автомобиля, не только экономят заряд и сохраняют аккумуляторы, но и позволяют более удобным способом считывать показания.

Аналогичным образом можно построить и цифровой вольтметр. В качестве источников света для такого варианта применения подойдут элементы на 12 В, а наличие дополнительного шунта в схеме вольтметра позволит более рационально использовать всю высоту столбчатой диаграммы.

Амперметр для автомобильного зарядного устройства на ATtiny13

Как-то раз в руки к автору этих строк попало весьма интересное устройство, рожденное в СССР, в далеком 1976 году – его просто отдали за ненадобностью.

Звали это устройство АДЗ-101У2, и оно представляло собой типичный образчик советского конструктивизма: тяжелый двадцатикилограммовый “чемодан”, с ручкой для переноски в верхней части и мощным однофазным трансформатором внутри. Но самое интересное, что у этого “чемодана” напрочь отсутствовала задняя панель – и вовсе не потому, что прибор успел ее “посеять”, нет. А дело здесь было в том, что обе его панели являлись… передними!

С одной своей стороны “чемодан” представлял собой сварочный аппарат, а с другой – зарядное устройство для автомобильных аккумуляторов. И если как “сварочник” он особых эмоций не вызвал – еще бы, ведь всего-то 50А переменного тока; то вот “зарядник” – вещь в хозяйстве, безусловно, нужная. Испытания прибора подтвердили его полную боеспособность (даже сварка работала!), но без недостатков, разумеется, не обошлось. Суть проблемы состояла в том, что штатный амперметр “зарядника” скрылся в неизвестном направлении, и предыдущий владелец аппарата подыскал ему вполне “равноценную” замену – автомобильный амперметр, скрученный с какого-то военного грузовика, и имеющий очень “информативную” шкалу в ±30 А!

Понятно, что следить за зарядом аккумулятора (а ток зарядки – всего лишь 3-6 А!) при помощи такого вот прибора, мягко говоря, проблематично – как будто и нет его вовсе… Поэтому решено было заменить “грузовиковый показометр” на какой- либо более или менее адекватный прибор, с внятной шкалой на 0-10 А. Идеальным кандидатом на эту роль представлялся стрелочный щитовой амперметр со встроенным шунтом – один из тех, которые раньше использовались практически во всех “зарядниках” советского производства, да и много где еще.

Однако, первая же прогулка по электромагазинам и “развалам” принесла разочарование: оказывается, ничего, хотя бы отдаленно напоминающего искомый прибор, уже давным-давно в продаже нет… А так-так в то время автор еще не был знаком с бескрайними просторами китайских чудосайтов, то руки вновь потянулись к паяльнику, в результате чего и было разработано устройство, схема которого приведена на рис.1, а характеристики – в табл.1:

Для вывода результатов измерения в данном амперметре решено было использовать пару 7-сегментых LED- индикаторов. Такие индикаторы, несмотря на некоторую свою архаичность по сравнению с новомодными LCD-модулями типа 16хх, обладают также и рядом неоспоримых преимуществ: они гораздо надежнее и прочнее; не портятся и не мутнеют от контакта с нефтепродуктами (а замасленные руки в гараже – дело обычное, цифры на LED-индикаторах ярче и гораздо “читабельнее” – особенно издали; и к тому же, никакой холод в гараже светодиодам не страшен – в отличие от ЖК, который на морозе попросту “слепнет”.

Ну а последним доводом в пользу светодиодной матрицы – в контексте данной разработки – стал тот факт, что длинный 1602 просто-напросто не вписывался по размерам в штатное отверстие для амперметра (круглое и очень небольшое!) на корпусе ЗУ. Определившись с типом индикатора, встал другой вопрос – какой же микроконтроллер использовать в качестве основы для данного устройства. В том, что эту схему нужно строить именно на МК, сомнений никаких не возникало -делая амперметр на “КМОП-россыпи”, можно повредиться рассудком.

На первый взгляд, самым очевидным решением является “рабочая лошадка” ATtiny2313 – этот МК имеет достаточно развитую архитектуру, и вполне подходящее для подключения LED-матрицы количество линий ввода-вывода. Однако, здесь все оказалось не так уж и просто – ведь для измерения тока в состав МК обязательно должен входить аналогово-цифровой преобразователь, но инженеры фирмы Atmel почему-то не оснастили “2313-й” данной функцией… Другое дело семейство Меда: эти чипы обязательно имеют “на борту” модуль АЦП.

Но, с другой стороны, даже АТМедав – как самый простой представитель “старшего” семейства – обладает гораздо большей функциональностью, чем того требует построение простого амперметра. А это уже не самое лучшее решение с точки зрения классического подхода к проектированию!

Под “классическим подходом к проектированию” здесь подразумевается так называемый “принцип необходимого минимума” (горячим приверженцем которого, в пику новомодным “Ардуинам”, является и автор этих строк), согласно которому любую систему следует проектировать с использованием минимально возможного количества ресурсов; а окончательный результат должен содержать в себе как можно меньше незадействованных элементов.

Поэтому, в соответствии с этим принципом – простому прибору – простой микроконтроллер, и никак иначе! Правда, и не все простые МК подойдут для поставленной задачи. Взять, к примеру, ATtinyl3 – в нем есть АЦП, он прост и недорог; да вот только линий ввода- вывода – для подключения матрицы из двух “семисегментников” – у него явно маловато… Хотя, если немного пофантазировать, то такая проблема вполне разрешима – при помощи копеечного счетчика К176ИЕ4 и несложного алгоритма, этим счетчиком управляющего.

Читайте также  Мощные свч-транзисторы philips semiconductors

Вдобавок, у такого подхода есть даже положительные стороны – во-первых, отпадает необходимость “навешивать” на каждый сегмент индикатора по токоограничительному резистору (генераторы тока уже имеются в выходных каскадах счетчика); а во-вторых, в данной схеме можно использовать индикатор как с общим катодом, так и с общим анодом – для перехода на “общий анод” нужно изменить подключение транзисторов VT1 и VT2, выв. 6 DD2 подключить к линии +9В через резистор 1 кОм, а левый вывод R3 соединить с “землей”. Для того, чтобы управлять счетчиком при помощи МК, нужно задействовать всего две линии: одну – для сигнала счета (С), а другую – для сигнала сброса (R).

Причем, в ходе испытания устройства выяснилось, что КМОП-микросхема К176ИЕ4, будучи подключенной напрямую к линиям МК, вполне надежно работает с его ТТЛ- уровнями – без какого-либо дополнительного согласования. А еще две линии МК управляют ключами VT1-VT2, создавая динамическую индикацию. Фрагмент исходного кода, где реализована процедура управления счетчиком DD2, приведен в листинге: можно зажигать тот или иной разряд индикатора.

Кстати, благодаря счетчику К176ИЕ4, к любому МК можно подключить индикаторную матрицу 7×4, задействовав для этого только 6 линий ввода-вывода (две – для управления счетчиком, и еще четыре – для динамического переключения разрядов). А если в “напарники” к К176ИЕ4 добавить еще один счетчик – декадный К176ИЕ8 – чтобы использовать его для “сканирования” разрядов; то появится возможность подключить к МК индикаторную матрицу величиной до 10 знакомест, выделив для этого всего лишь 5 линий ввода-вывода (две – для управления К176ИЕ8; две – для К176ИЕ4; и еще одна – для гашения индикатора в момент счета К176ИЕ4)!

В подобном случае процедура написана на низкоуровневом языке AVR-Assembler; однако, она легко может быть переведена и на любой язык высокого уровня. В регистре Temp процедура получает число, которое необходимо отправить в счетчик К176ИЕ4 для отображения на индикаторе; линия 1 порта В микроконтроллера подключена ко входу сброса счетчика (R), а линия 2 – к его счетному входу (С).

Чтобы избежать мерцания чисел в момент переключения счетчика, перед вызовом данной процедуры необходимо погасить оба разряда, закрыв транзисторы VT1 и VT2 подачей лог.О на линии 0 и 4 порта В МК; ну а после того, как процедура отработает, уже алгоритм динамической индикации будет сводиться к управлению счетчиком К176ИЕ8, что во многом аналогично алгоритму передачи цифры в счетчик К176ИЕ4, приведенному в листинге выше.

К недостаткам же такого подключения индикаторной матрицы – помимо использования “лишней” микросхемы – можно отнести необходимость введения в схему дополнительного питания +9 В, т.к. попытки запитать КМОП-счетчики от +5 В, увы, не увенчались успехом… В качестве индикатора в данном устройстве применим практически любой сдвоенный “семисегментник” с общими катодами, предназначенный для работы в схемах с динамической индикацией. Допустимо использовать и четырехразрядную матрицу, задействовав у нее только два из четырех имеющихся разрядов.

В авторском варианте индикаторное “табло” и вовсе было собрано на отрезке макетной платы “решета”, из двух “древних” одноразрядных АЛС321… Правда, в процессе работы над схемой амперметра всплыла небольшая проблема – с подключением десятичной запятой: ведь она должна светиться в старшем разряде, и не гореть – в младшем. И если все делать “по уму”, то неплохо было бы выделить – для динамического управления этой самой запятой – еще одну ножку МК (т.к. в К176ИЕ4 никаких средств для управления запятыми не предусмотрено) – чтобы на нее “повесить” вывод индикатора, отвечающий за запятые.

Но, поскольку все линии ввода-вывода МК уже были заняты, то бороться с этой проблемой пришлось отнюдь не самым изящным способом: обе запятые решено было оставить постоянно зажженными, запитав соответствующий вывод индикаторной “матрицы” от линии +9В через токоограничительный резистор R3 (подбирая его сопротивление, можно выровнять яркость свечения запятой относительно остальных сегментов); а лишнюю запятую в младшем разряде (крайнюю правую) просто замазать каплей черной нитрокраски. С технической точки зрения такое решение сложно назвать идеальным; но в глаза “загримированная” подобным образом запятая совершенно никак не бросается…

В качестве датчика тока используются два параллельно соединенных резистора R1 и R2, мощностью по 5 Вт каждый. Вместо пары R1 и R2 вполне можно установить и один резистор сопротивлением 0,05 Ом – в таком случае его мощность должна быть не менее 7 Вт. Более того, в “прошивке” микроконтроллера предусмотрена возможность выбора сопротивления измерительного шунта – в данной схеме может быть применен как 0,05-омный, так и 0,1-омный датчик тока.

Для того, чтобы задать микроконтроллеру сопротивление шунта, использующегося в конкретном случае, необходимо записать определенное значение в ячейку памяти EEPROM, расположенную по адресу 0x00 – для сопротивления 0,1 Ом это может быть любое число меньше 128 (в таком случае МК, будет делить результат измерений на 2); а при использовании шунта сопротивлением 0,05 Ом в эту ячейку, соответственно, следует записать число больше 128.

И если планируется эксплуатировать устройство с приведенным на схеме 0,05-омным шунтом, то о записи указанной ячейки можно и вовсе не беспокоиться, т.к. у нового (или “стертого в ноль”) МК во всех ячейках памяти итак будет число 255 (OxFF). Питать прибор можно как от отдельного источника – напряжением не менее 12 В, так и от силового трансформатора самого зарядного устройства. Если питание будет производиться от трансформатора ЗУ, то желательно задействовать для этого отдельную обмотку, никак не связанную с зарядной цепью; однако, допускается питать амперметр и от одной из зарядных обмоток.

В этом случае напряжение питания нужно брать до выпрямительного моста “зарядника” (т.е., непосредственно с обмотки), а в разрыв обоих проводов питания амперметра включить по резистору 75 Ом/1 Вт. Резисторы необходимы для зашиты “отрицательных” диодов моста VD1-4 от прохождения через них части зарядного тока.

Дело в том, что если подключить прибор к зарядной обмотке, не установив этих резисторов то, учитывая общую “землю” у моста VD1-4 и диодного моста зарядного устройства, около половины зарядного тока аккумулятора будет возвращаться в обмотку не через мощные диоды выпрямителя ЗУ, а через “отрицательное” плечо моста VD1-4, вызывая сильный нагрев маломощных 1N4007.

Установка же этих резисторов ограничит ток питания прибора и оградит диодный мост VD1-4 от протекания зарядного тока, который теперь, практически полностью, будет течь по “правильной” цепи – через мощные диоды выпрямителя ЗУ.

Печатная плата для данного амперметра разрабатывалась под конкретные посадочные места в корпусе конкретного ЗУ; ее чертеж приведен на рис.2. Индикаторная матрица устанавливается отдельно – на небольшом платке (отрезке “макетки” 30×40), которая крепится к основной плате болтами М2,5 через дистанционные втулки, со стороны монтажа; и соединяется с ней 10-жильным шлейфом. Еще одной частью получившегося “бутерброда” является декоративная передняя панель из оргстекла, покрашенная с обратной стороны нитрокраской из баллончика (не закрашенным должен остаться только небольшой прямоугольник – “окошко” для индикатора).

Передняя панель также крепится к основной плате со стороны монтажа (болтами М3 с дистанционными втулками – ими же прибор крепится и к корпусу ЗУ). Печатные дорожки сильноточной цепи, идущие к резисторам R1 и R2, следует выполнить как можно более широкими, и припаять к ним выводы резисторов на всю длину, заодно усилив монтаж толстым слоем припоя. В качестве выводов для подключения прибора к ЗУ желательно использовать два болта М3, припаяв их головки к плате, и закрепив с другой стороны гайками.

При записи “прошивки” в МК его необходимо настроить для работы на частоте 1,2 МГц. от внутреннего тактового генератора. Для этого частоту тактирования следует выбрать равной 9,6 МГц, и включить внутренний делитель такта на 8. Для увеличения надежности работы также желательно активировать внутренний супервайзор питания (модуль BOD), настроив его на сброс МК при “просадке” питающего напряжения ниже 2.7 В. Все настройки производятся при помощи записи соответствующих значений в конфигурационные Fuse-ячейки: SUT1=1, SUT0=0, CKDIV8=0, BODLEVEL1 =0. BODLEVELO= 1. WDTON=1. Остальные “фъюзы” можно оставить по умолчанию.

Цифровой амперметр и вольтметр для блока питания

Черный с минусом. А вот автомобильный вольтметр рис. При подключении устройства в сеть постоянного тока на табло показывается полярность подключения. Потенциал же на фазовом выводе меняется с положительного до отрицательного с частотой 50 Гц, го есть ток под нагрузкой будет менять свое направление 50 раз в секунду. Вольтметр амперметр с алиэкспресс — подключение, калибровка и доработка Измерительные трансформаторы тока Для подключения амперметров к цепям переменного тока служат измерительные трансформаторы тока. Измерительные трансформаторы тока Для подключения амперметров к цепям переменного тока служат измерительные трансформаторы тока. Потенциал же на фазовом выводе меняется с положительного до отрицательного с частотой 50 Гц, го есть ток под нагрузкой будет менять свое направление 50 раз в секунду.


Также, помимо стандартной схемы, мы будем описывать, как подключить вольтамперметр к зарядному устройству Как подключить вольтамперметр к зарядному устройству — подборка схем Мы выбрали 4 самых распространенных вольтамперметров, которые используют умельцы в своих устройствах.


Напряжение от бортовой сети автомобиля через делитель R1-R2-R3 поступает на вход микросхемы D1. Измерение постоянного напряжения Чтобы измерить постоянное напряжение между двумя точками цепи, параллельно цепи, между этими двумя точками, подключают воль width=»960″ height=»720″[/img] Постоянное напряжение Способы измерения постоянного напряжения зависят от его величины: до 1 милливольта — цифровыми и аналоговыми аппаратами со встроенным усилителем; до вольт используют обычные аппараты различных систем; свыше 1 кВ измерения производятся электростатическими приборами, предназначенными для работы в высоковольтных сетях или обычными, включёнными через делитель.


ВОЛЬТМЕТР-АМПЕРМЕТР ТЕСТ, КАЛИБРОВКА, СХЕМА ПОДКЛЮЧЕНИЯ. АЛИЭКСПРЕСС

Прибор для измерения нескольких пределов

Кто не раз сталкивался с транзисторными конструкциями и схемами знает, что очень часто вольтметром приходится замерять цепи с напряжением от десятков долей одного вольта до сотен вольт. Простой приборчик, изготовленный своими руками, с одним резистором это не осилит, поэтому в схему придется подключить несколько элементов с разным сопротивлением. Чтобы вы поняли, о чем идет речь, предлагаем ознакомиться со схемой, расположенной снизу:

На ней показано, что в схеме установлено четыре резистора, каждый из которых отвечает за свой диапазон измерений:

  1. От 0 вольт до единицы.
  2. От 0 вольт до 10В.
  3. От 0 В до 100 вольт.
  4. От 0 до 1000 В.
Читайте также  Снятие и установка приборов электрооборудования

Номинал каждого резистора поддается подсчету, который проводится на основе закона Ома. Здесь используется следующая формула:

  • Rп – это сопротивление измерительного блока, возьмем, к примеру. 500 Ом;
  • Uп – это максимальное напряжение измеряемого предела;
  • Iи – это сила тока, при которой стрелка отклоняется до конца шкалы, в нашем случае – 0,0005 ампер.

Среднеквадратичный амперметр

Определение многих параметров радиоэлектронной аппаратуры в конечном итоге сводится к измерению переменных напряжений различной формы.

На практике радиолюбителю приходится сталкиваться со всеми четырьмя значениями переменного напряжения: средним значением — Uо, средневыпрямленным — Uср.в, среднеквадратичным — U и пиковым — Um. Среднее значение напряжения равно его постоянной составляющей; средневыпрямленное значение — среднему значению абсолютной величины переменного напряжения; среднеквадратичное — корню квадратному из среднеарифметического значения квадратов мгновенных значений напряжений за данный отрезок времени, а пиковое — наибольшему мгновенному значению напряжения за время измерения Т.

Естественно, что и вольтметры переменного напряжения также подразделяются на линейные, показания которых пропорциональны Uср.в, квадратичные, показания которых пропорциональны U, и импульсные, показания которых пропорциональны Um. Но наибольший интерес для радиолюбителей представляет среднеквадратичное значение напряжения, так как именно ему пропорциональна мощность выделяемая на нагрузке. Поэтому шкалы вольтметров всех типов градуируются в среднеквадратичных значениях напряжения синусоидальной формы. И нельзя забывать, что показания такого вольтметра будут верны только при измерении напряжения данной формы. Типичными случаями ошибочного применения линейных вольтметров являются измерение уровня помех и шумов, пульсации постоянных питающих напряжений, напряжения гармоник, напряжений импульсной формы и т. п. В большинстве случаев результаты измерений оказываются существенно заниженными что приводит к искусственному завышению параметров качества (т.е. уменьшению уровня помех, шумов, напряжения пульсаций, коэффициента гармоник и т. д.) исследуемых устройств. Вольтметры истинных среднеквадратичных значений, показания которых верны для напряжений любой формы, значительно сложнее линейных. Это обусловлено необходимостью применения для выпрямления квадратичных детекторов. Построить такой вольтметр можно используя операционные усилители.

Измерение тока различной формы сводится в итоге тоже к измерению падения напряжения на сопротивлении шунта. Схема среднеквадратичного амперметра, предназначенного для калибровки измерительных головок для амперметров импульсных зарядных устройств (тиристорных, транзисторных), представлена на рисунке. Измеряемый ток прибора 15 ампер. Выбор данного предела был обусловлен наличием у меня головки от тестера Ц4313, у которого шкала имеет тридцать делений, 15-ть кратно 30-ти. Сложность схемы кажущаяся и при правильном монтаже начинает работать сразу.

Напряжение падающее на сопротивлении шунта Rш поступает на каскад выделения абсолютной величины напряжения, выполненного на элементе DA1.1 микросхемы К1401УД2А по схеме двухполупериодного выпрямителя. Положительна волна напряжения со входа проходит на преобразователь через резистор R4 напрямую, а отрицательная полуволна инвертируется и подается через резистор R7. На элементах DA1.2 и DA1.3 собран непосредственно сам среднеквадратичный преобразователь. С выхода преобразователя постоянное напряжение, соответствующее среднеквадратичному входного, с движка подстроечного резистора R9, подается на вольтметр (R10, измерительная головка.) Можно подключить и внешний вольтметр, например мультиметр. В качестве шунта я использовал десять двухваттных резисторов включенных параллельно (что было в наличии) Фото 1. Можно конечно поставить один проволочный на 0,1 Ома. При прохождении через него среднеквадратичного тока величиной 15А, на нем будет выделяться мощность Р = I2•R = 225•0,1 = 22,5Вт. Не забывайте это. Рассчитать сопротивление добавочного резистора R10 для вашей измерительной головки, можно заглянув сюда. Рассчитывайте сопротивление на напряжение 0,1 вольта, недочеты компенсируете резистором R9. Калибровка прибора проста. Пропускаете через прибор постоянный ток в любом направлении известной величины (например 3 ампера) и резистором R9 устанавливаете стрелку вашего прибора на третье деление шкалы. Показания прибора, при изменении полярности подключения, должны быть примерно одинаковы. В противном случае, изменяя величину резистора R4, можно выровнять напряжения полуволн. Шкала линейная, поэтому хватит и одного раза калибровки. Лучше в середине шкалы.


Питание прибора у меня сетевое, но можно сделать его и от батареек, например применить две «Кроны». Внешний вид прибора и его внутренности показаны на фото1. Времени на дизайн у меня нет, поэтому я обошелся без предохранителя, без выключателя сети, без индикатора включения и т.д. Вы я надеюсь доведете прибор до ума. Старайтесь делать лучше – хреново само получится. Теперь имея такой прибор вы можите спокойно рисовать нелинейные и довольно точные шкалы для своих зарядных устройств, а если не лень, то просто спаять эту платку и вставить в зарядное, домотав на трансформатор две обмотки для ее питания. Скачать рисунок печатной платы. Успехов всем. До свидания. К.В.Ю.

Литература: Среднеквадратичный милливольтметр. Н. Сухов Радио 1981 №11 стр.53 Регулируемый регулятор мощности В.Тушнов Схемотехника 2003 №3 стр.4 Гутников В.С. Интегральная электроника в измерительных устройствах (1988) стр.117-120

Упрощенный авометр своими руками для начинающего радиолюбителя

Принципиальная схема подобного упрощенного измерительного при­бора показана на рис. ниже. Он позволя­ет измерять постоянные токи до 100мА, постоянные напряжения до 30 В и со­противления от 50 Ом до 50 кОм. Пе­реключение видов и пределов измере­ния осуществляется включением одного из щупов в гнезда Гн1—Гн10. Второй щуп, вставленный в гнездо Гн11 «Общ.», общий для всех видов и пре­делов измерения.

Омметр однопредельный. В него вхо­дят: микроамперметр ИП1, источник питания Э1 напряжением 1,5 В и добавочные рези­сторы R1 «Уст. 0» и R2. Перед изме­рением щупы прибора соединяют, и пе­ременным резистором R1 стрелку мик­роамперметра устанавливают на конеч­ную отметку шкалы, являющуюся ну­лем омметра. Затем щупами касаются выводов резистора, обмотки трансформа­тора или проводников участка цепи, сопротивление которых надо измерить, и по шкале омметра определяют ре­зультат измерения.

Четырехпредельный вольтметр обра­зуют тот же микроамперметр ИП1 и добавочные резисторы R3—R6. С ре­зистором R3 (при включении второго Щупа в гнездо Гн2) отклонение стрел­ки микроамперметра на всю шкалу соответствует напряжению 1 В, с ре­зистором R4—3 В, с резистором R5— 10 В, с резистором R6—30 В.

Миллиамперметр пятипредельный: 0—1, 0—3, 0—10, 0—30 и 0—100 мА. Его образует универсальный шунт составленный из резисторов R7—R11, к которому кнопкой Кн1 подключают микроамперметр ИП1. Так сделано для того, чтобы при измерении микро­амперметр подключался к шунту, через который течет большая часть измеряе­мого тока, а не наоборот.

Конструкция рекомендуемого комби­нированного измерительного прибора показана на рис. Микроамперметр типа М49 на ток полного отклонена стрелки 300 мкА с сопротивлением рам­ки 300 Ом. Переменный резистор R1 (СПО-0,5), кнопка КН (КМ1-1) и все гнезда прибора укреплены непосредст­венно на лицевой панели, выпиленной из листового текстолита толщиной 2 мм. Роль гнезд Гн1—Гн11 выполняет гнездовая часть десятиконтактного разъема. Низкоомные резисторы R9-R11 типа МОИ (или проволочные), остальные МЛТ на мощность рассеяния 0,5 или 0,25 Вт. Необходимые сопро­тивления резисторов подбирают при налаживании путем их замены, параллельным или последовательным соеди­нением нескольких резисторов. В опи­сываемом приборе каждый из резисто­ров R3 и R6, например, составлен из двух последовательно соединенных ре­зисторов, каждый из резисторов R5 и R11 также из двух резисторов, но со­единенных параллельно.

Калибровка вольтметра и миллиам­перметра заключается в подгонке со­противлений добавочных резисторов и универсального шунта под максималь­ные напряжения и токи соответствую­щих пределов измерения, а омметра — к разметке шкалы по образцовым ре­зисторам.

Калибровку вольтметра производите по схеме, показанной на рис. Па­раллельно батарее Б1 напряжением 13,5 В (или от БП) подключите пе­ременный резистор Rp сопротивлением 2—3 кОм, который будет выполнять роль регулировочного, а между его движком и нижним (по схеме) выво­дом,— параллельно соединенные само­дельный калибруемый (VK) и образ­цовый (V0) вольтметры. Образцовым может быть вольтметр заводского аво­метра. Предварительно движок регу­лировочного резистора поставьте в край­нее нижнее (по схеме) положение, а калибруемый вольтметр включите на первый предел измерений — до 1 В. Постепенно увеличивая напряжение, по­даваемое от батареи на вольтметры, установите на них по образцовому вольтметру напряжение, точно равное 1 В. Если при этом стрелка калибруе­мого вольтметра не доходит до ко­нечной отметки шкалы, это укажет на то, что сопротивление добавочного ре­зистора R3 оказалось больше, чем на­до, а если уходит за пределы шкалы, то — меньше. Подбирая этот резистор, добейтесь, чтобы при напряжении 1 В стрелка вольтметра устанавливалась точно против конечной отметки шкалы.

Точно так же, но при напряжениях 3 и 10 В, фиксируемых образцовым вольтметром, подгоняйте добавочные резисторы R4 и R5 следующих двух пределов измерений. Для калибровки четвертого предела измерений не обя­зательно подавать на вольтметры на­пряжение 30 В. Можно подать 10 В и подбором резистора R6 установить стрелку калибруемого вольтметра на отметку, соответствующую первой третьей части шкалы. При этом откло­нение его стрелки на всю шкалу будет соответствовать напряжению 30 В.

Для калибровки миллиамперметра потребуются: миллиамперметр на ток до 100 мА, свежий элемент 343 или 373 и два переменных резистора — пленочный (СП, СПО) сопротивлением 5—10 кОм и проволочный сопротивле­нием 50—100 Ом. Первый из этих ре­гулировочных резисторов будете ис­пользовать при подгонке резисторов R7—R9, второй — при подгонке рези-, сторов R10 и R11 универсального шунта.

Первым подгоняйте резистор R7 шунта. Для этого соедините последо­вательно (рис. б): образцовый мил­лиамперметр мА0, калибруемый мАк, включенный на первый предел изме­рений (до 1 мА), элемент Э1 и пере­менный резистор Rp. Нажмите кнопку Кн1 «/» (см. рис. 17) авометра и, плавно уменьшая вводимое сопротивле­ние регулировочного резистора Rv, ус­тановите в цепи ток, равный 1 мА. Сопротивление резистора R7 должно быть таким, чтобы при таком токе в цепи стрелка калибруемого миллиам­перметра была против конечной отмет­ки шкалы.

Аналогично подгоняйте: резистор R8 — на пределе 3 мА, резистор R9— на пределе 10 мА, а затем, заменив пленочный регулировочный резистор проволочным, резистор R10 — на пре­деле 30 мА и, наконец, резистор R11— на пределе 100 мА. Подбирая сопро­тивление очередного резистора шунта, уже подогнанные не трогайте — можно сбить калибровку прибора на первых пределах измерения.

Разметить шкалу омметра проще всего с помощью постоянных резисто­ров с допуском от номинала ±5%. Делайте это так. Сначала замкните Щупы и регулировочным резистором R1 «Уст. О» установите стрелку микро­амперметра на конечную отметку шкалы, соответствующую нулю омметра. За­тем разомкните щупы и подключайте к ним резисторы с номинальными со­противлениями: 50, 100, 200, 300, 400, 500 Ом, 1 «Ом и т. д. примерно до 50—60 кОм, замечая всякий раз на шкале точку, до которой отклоняется стрелка прибора. И в этом случае ре­зисторы нужных сопротивлений со­ставляйте из резисторов других номи­налов. Например, резистор сопротивле­нием 40 Ом можно составить из двух резисторов по 20 Ом, резистор на 50 кОм из резисторов сопротивлением 20 и 30 кОм. По точкам отклонений стрелки, соответствующим разным со­противлениям образцовых резисторов, размечайте (градуируйте) шкалу ом­метра.

Шкалы самодельного комбинирован­ного измерительного прибора должны иметь вид, показанный на рис.

Читайте также  Регулятор скорости вращения вентиляторов 12в

Верхняя из них — шкала омметра, нижняя — общая шкала вольтметра и миллиамперметра. Их надо возможно точнее начертить на плотной лакиро­ванной бумаге по форме шкалы микро­амперметра. Затем осторожно извлечь магнитоэлектрическую систему прибора из корпуса и наклеить новую шкалу, точно совместив дугу шкалы омметра с прежней шкалой. Чтобы не разби­рать микроамперметр, шкалы самодель­ного прибора можно начертить на плотной бумаге в соответствующем масштабе прямолинейными и наклеить ее на лицевую или переднюю боковую стенку ящика прибора.

В описанном комбинированном при­боре использован микроамперметр на ток Iи=300 мкА с сопротивлением рамки Rи, равным 300 Ом. При таких параметрах микроамперметра относи­тельное входное сопротивление вольт­метра не превышает 3,5 кОм/В. Увели­чить относительное входное сопротив­ление и тем самым уменьшить влияние вольтметра на режим в измеряемой це­пи можно только использованием бо­лее чувствительного микроамперметра. Так, например, с микроамперметром на ток I=200 мкА относительное вход­ное сопротивление вольтметра будет 5, а с микроамперметром на ток I =100мка — 10кОм/В. С такими приборами расширится и предел измерения омметром. Но при замене микроамперметра более чувствительным надо с учетом его параметров I и К пересчитать сопротивление всех сопротивлений авометра.

Таким способом можно проверить или откалибровать любой стрелочный или цифровой вольтметр (амперметр). В качестве образцового рекомендуется использовать цифровой прибор заводского исполнения.

Такой прибор можно также положить в бардачок автомобиля. В поездке он может пригодиться для отыскания повреждений электропроводки, не годных ламп, соответствия бортового напряжения автомобиля.

Призма — не по детски интересные поделки
своими руками.

Сайт сегодня посетили:

Приборы со шкалой светодиодов

Оригинальная статья основана на наборчиках радиодеталей от конторы МАСТЕРКИТ ( www.masterkit.ru ). Один из наборчиков называется NM5302 – Блок индикации — автомобильный вольтметр «бегающая точка» . Проблема в том, что данный набор уже перестали выпускать, поэтому придётся импровизировать и закупаться запчастями по отдельности. Стоит особо отметить, что основа схемы – чип UAA180 или отечественный аналог 1003ПП1. Зная теперь это вам не составит труда собрать своими руками приборы со шкалой светодиодов для своего автомобиля.

Назначение выводов микросхемы:
1 – земля;
18 – питание до +18 Вольт;
17 – вход для измеряемого напряжения;
16 – эталонный нижний уровень измеряемого напряжения;
3 – эталонный верхний уровень;
2 – управлени яркостью свечения светодиодов;
4..15 – выводы управления включением светодиодами.

Микросхема делит разницу напряжений между 3й и 16й ногой на 12 диапазонов, и если напряжение на 17й ноге попадает в один из этих диапазонов, то зажигается соответствующий светодиод. Однако, есть ограничения: напряжения на измерительных выводах не могут быть больше 6 Вольт.
Чтобы ограничить измеряемое напряжение, соберём измерительную цепочку из стабилитрона и двух резисторов. Пусть V – напряжение в бортовой сети. В цепочке из стабилитрона VD1 и сопротивлений R1, R2 напряжение на стабилитроне будет постоянным 9 Вольт (приблизительно), а на мостике R1, R2 оно будет равно (V-9). При одинаковых сопротивлениях R1=R2 напряжение на сопротивлении R2 получится равным половине (V-9), т.е. если в сети напряжение V будет меняться от 10 до 15 Вольт, то напряжение в точке между R1 и R2 будет меняться от (10-9)/2 =0,5 до (15-9)/2 =3 Вольт.
Цепочка R3, R4, R5 и стабилитрон VD2 задают эталонные минимальное и максимальное напряжение. Минимальное ноль, т.к. 16 нога на земле. Максимальное устанавливается подстроечным резистором на уровне около 3 Вольт. При такой настройке получается возможным измерение напряжения бортовой сети в диапазоне от 9 до 15 Вольт с шагом 0,5 Вольта на один светодиод.
Цепочка R6, R7 просто задаёт яркость свечения диодов. При R6=50К яркость больше, при 100К меньше.

Варианты схем со шкалой «бегающая точка» и «светящийся столб» отличаются только подключением светодиодов к микросхеме. Измерительные цепи остаются такими же.

Настройка схемы выполняется следующим образом. Вольтметр нужно подключить к эталонному источнику 14,7В, повернуть подстроечный резистор так, чтобы загорелся столб из 11 светодиодов, затем медленно поворачивать подстроечник в обратную сторону до того положения, пока 11й светодиод не погаснет и в столбе останется только 10 включенных светодиодов.
Подразумевается, что шкала имеет масштаб 2 светодиода на 1 Вольт, и включение 11го светодиода соответствует достижению измеряемым напряжением уровня 14,7В так, как это показано на рисунке ниже.

Над светодиодами в передней панели вольтметра сделана цветная разметка диапазонов напряжения:
до 11,6В — красный, заряд АКБ менее 50%;
11,6-12,6В — красный пунктир, заряд АКБ 50-100%;
12,6В — зеленая точка, заряд 100%;
13,7-14,7В — зеленый, напряжение генератора в норме;
более 14,7В — красный, перезаряд.

Схему спаял в варианте «светящийся столб». На рисунке внизу общий вид того, что получилось. Подсветку сделал одной безцокольной автомобильной лампочкой на 12В.

Собиралось все приблизительно так, как на картинке ниже.

Рисунок платы. Сделано в зеркальном отражении, чтобы переводить отпечаток на фольгу для травления. Если печатать с плотностью 300 точек на дюйм, то получим картинку в масштабе 1:1.

Размещение деталей. Вид со стороны монтажа радиодеталей. Дорожки на самом деле с другой стороны платы, но здесь нарисованы видимыми, как будто плата прозрачная.

Во время работы прибора на автомобиле обнаружился недостаток.

Из-за дискретности шкалы последний в светящемся столбе светодиод часто работает в мерцающем режиме. Не всегда, но часто. По началу мигание отвлекает внимание, правда, потом привыкаешь, а мигание воспринимается, как попытка прибора изобразить половину деления дискретной шкалы.

Указатель остатка топлива на самом деле является омметром и измеряет сопротивление датчика-реостата. Если подключить переменное соротивление к указателю, то его показания должны соответствовать следующему:
0 Ом – стрелка лежит на левом краю шкалы;
15 Ом – стрелка на границе красной и белой зоны;
45 Ом – стрелка на линии 1/2;
90 Ом – стрелка на линии 1;
при разрыве стрелка на правом краю шкалы;

Из предыдущей схемы получается довольно простая схема указателя уровня топлива, т.к. в качестве омметра можно использовать вольтметр, который измеряет напряжение на сопротивлении, через которое протекает стабилизированный ток.

Стабилизатор 78L03 при таком подключении работает, как источник тока 30 мА. Стабилитрон на 3В нужен для защиты измерительного входа микросхемы от перенапряжения в случае «обрыва» провода датчика. При КЗ датчика показания должны быть, как для пустого бака.
Цепочка R3, C3 замедляет изменение напряжения на измерительном входе 17 микросхемы UAA180. Постоянная времени цепочки около 2 секунд. Такое замедление должно предотвращать скачки в показаниях прибора при колебаниях поплавка датчика вместе с уровнем бензина во время движения.
Для настройки прибора вместо датчика-реостата нужно подключить сопротивление 90 Ом и, вращая подстроечный резистор, найти момент включения полного светящегося столба.
На рисунке ниже передняя панель указателя.

После установки приборов на автомобиль был замечен такой недостаток в работе указателя остатка топлива.
При полном баке все хорошо, а, вот, когда бак становится пустым больше, чем на половину, то во время движения (в поворотах, или при разгоне/торможении) показания могут меняться на 3 деления (а это четверь шкалы!), например, от 1 до 4 светодиодов. Очевидно, что это связано с переливанием бензина по горизонтально расположенному баку под действием сил инерции. Как с этим бороться пока не очень понятно.

В книжках пишут, что зависимость сопротивления исправного датчика ТМ-100А (штатный датчик на УЗАМ) от температуры должна быть такой:

Зависимость обратная, да еще и не линейная. Но датчик логометрического типа. Такой датчик обеспечивает изменение тока в обмотке указателя пропорционально измеряемой величине. Получается интересная штука: если такой датчик включить последовательно с правильно подобранным дополнительным сопротивлением (равным сопротивлению обмотки измерителя), подать на эту цепочку стабилизированное напряжение, то на этом дополнительном сопротивлении напряжение будет пропорционально температуре. Это дополнительное сопротивление приблизительно равно 150 Ом. Из-за того, что датчик температуры должен устанавливаться на массу, схема простой не получилась. То, что получилось, представлено на рисунке.

Пояснение для тех, кто захочет разобраться в схеме.
Схема сделана шиворот на выворот. Представьте часы, у которых стрелка часов всегда смотрит вверх, а циферблат вращается под стрелкой. 17я нога, которая должна быть подключена к измеряемому напряжению, подключена к стабилизированным 3 Вольтам. Разница измеряемых мин. и макс. напряжений между 16й и 3ей ногой тоже стабилизированная, около 3х Вольт, но напряжения на 16й и 3й ноге меняются синхронно, «плавают» вокруг напряжения на 17й ноге. В целом схема работает так, что показания шкалы светодиодов соответствуют напряжению на резисторе R3. Мостики со стабилитронами нужны для поддержания напряжений-границ измеряемого диапазона.

Однако, оказалось, что в схеме термометра можно обойтись без стабилизации вообще. Ниже приведена гораздо более простая схема. Она основана на том, что как бы не изменялось напряжение питания схемы при постоянной температуре, пропорция напряжений на входах микросхемы U16:U17:U3 будет оставаьтся постоянной. Абсолютные величины будут меняться, но их отношение друг к другу нет.

Мостик R4-R5-R6 устанавливает границы измеряемого диапазона. Подстроечник R1 позволяет сдвигать показания в большую или меньшую сторону. Сопротивление R3 необходимо для понижения напряжения питания до уровня, при котором напряжение на входах DA1 не будет превышать предельно допустимого в 6В.

Такую схему можно использовать только в режиме светящаяся точка. Дело в том, что при минимальной температуре измеряемое в этой схеме напряжение максимально. С повышением температуры напряжение уменьшается до минимального. Чтобы светящаяся точка двигалась по шкале слева направо с увеличением температуры, а не наоборот, достаточно расположить светодиоды на индикаторе в обратном порядке. Но такое возможно только для светящейся точки. Светящийся столб в обратном порядке не зажигается.

Чтобы «перевернуть» напряжение относительно середины измеряемого диапазона можно добавить в схему инвертор на операционном усилителе.

Номиналы сопротивлений, задающих напряжения на входах 3 и 16, подобраны таким образом, чтобы полная шкала в 12 светодиодов соответствовала диапазону в 80оС.

Схема настраивается следующим образом. Можно опустить датчик температуры в кипящую воду, либо вместо датчика к схеме подсоединить сопротивление 91 Ом и подстроечным резистором найти момент переключения светящегося столба с 10 на 11 светодиодов, что должно соответствовать точке кипения воды — 100оС.

В общем номиналы сопротивлений и настройка должны соответствовать вот такой передней панели термометра.

У термометра обнаружился такой недостаток.

Т.к. шкала была рассчитана в масштабе 3 светодиода на 20оС, то один диод перекрывает диапазон приблизительно в 7 градусов. Если во время езды на шкале горит 10 диодов, то температура может быть от 93 до 100оС, а сколько именно, сказать нельзя. В то же время на автомобильном термометре не нужна растянутая левая часть шкалы для низких температур. Поэтому при повторении конструкции лучше будет сделать термометр с масштабом 5оС на диод, например, от 50 до 110оС так, как на рисунке ниже.