Акустический автомат лестничного освещения на симисторе

Модернизированный акустический автомат лестничного освещения на симисторе

В статье рассмотрен автомат, включающий лампу накаливания по звуковому сигналу, на время от 10 сек до 1 минуты. Выдержка продлевается по мере поступления новых звуковых сигналов. Автомат дополнен функциями защиты нити лампы накаливания и регулятором яркости для увеличения её срока службы.

Известные автору конструкции автоматов лестничного освещения далеки от совершенства: они либо сложны схемотехнически, либо содержат микроконтроллер, что требует его прошивки с помощью программатора, либо такие автоматы вообще функционально ограничены и только включают лампу накаливания на заданный промежуток времени по звуковому сигналу. В то же время совершенно необходимо дополнить такой автомат функцией защиты лампы накаливания и регулятором яркости, что обеспечит дополнительную защиту лампы в вечерние часы, когда число потребителей уменьшается, и напряжение в сети возрастает.

Известно, что в большинстве случаев лампа выходит из строя именно в момент включения, ещё не исчерпав свой рабочий ресурс. Происходит это из-за броска тока, когда сопротивление холодной нити в несколько раз меньше, чем в нагретом состоянии. При этом амплитудное значение тока достигает нескольких ампер, что приводит к быстрому разрушению нити. Также замечено, что если эксплуатировать лампу не на максимальной яркости, а при значении 70…80 процентов от максимальной, испарение спирали заметно уменьшается. Поэтому, дополнив автомат регулятором яркости и функцией защиты лампы, можно значительно продлить срок её службы.

Как и в базовом варианте, в данной конструкции, в качестве коммутирующего элемента применён симистор, что, по сравнению с аналогичными, тиристорными вариантами конструкций, позволило сократить число элементов, устанавливаемых на теплоотвод, с пяти до одного. Кроме того, в отличие от базовой версии, микрофонный усилитель выполнен на ОУ, что позволило значительно повысить чувствительность автомата. Также по упрощённой схеме выполнен цифровой таймер, управляющий включением лампы накаливания. В итоге, получился более надёжный автомат (на меньшем числе компонентов), реализующий лучшие характеристики с меньшими аппаратными затратами.

Схема электрическая принципиальная. Схема электрическая автомата показана на рис.1.

Автомат содержит: стабилизатор напряжения 5В на элементах R1…R4, VD2, VD3, C1…C3, DA1; фильтр для питания усилителя на ОУ — элементы R5, C4; одновибратор-схему выделения моментов перехода сетевого напряжения через нуль: R8, R9, DD1.1, DD1.2; схему управления яркостью: VT1, R13, C7, DD1.3, DD1.4; ключевой транзистор VT2 и коммутирующий симистор VS1; одновибратор управления таймером на элементах DD2.1, DD2.2, собственно таймер на элементах R17, C10, DD2.4, а также усилитель сигналов звуковой частоты на ОУ DA1.1 и DA1.2, диодный выпрямитель VD9, VD10, а также интегрирующий конденсатор C16.

Работает автомат следующим образом. При первом включении питания, в отсутствии звуковых сигналов, конденсаторы С6, С10 разряжены. На выходах элементов DD2.5, DD2.6 устанавливается уровень лог.0, который через резистор R19 приводит к постепенной (десятые доли секунды) зарядке конденсатора C6. Также уровнем лог.1 с выхода элемента DD2.3 через резистор R17 заряжается конденсатор C10. Это событие индицирует горящий светодиод HL1.

На катоде стабилитрона VD2 в моменты перехода сетевого напряжения через нуль формируются короткие отрицательные импульсы пилообразной формы. Одновибратор, собранный на элементах DD1.1, DD1.2, формирует из этих импульсов на выходе короткие отрицательные импульсы, но уже прямоугольной формы. Диод VD3 предотвращает влияние заряженного конденсатора C1 на вход одновибратора.

Каждый выходной отрицательный импульс одновибратора через диод VD5 быстро разряжает конденсатор C7 и устанавливает на входах элемента DD1.3 напряжение значительно ниже порогового (около 0,7В). При этом ключевой транзистор VT2 и симистор VS1 закрыты. Лампа выключена. По мере зарядки конденсатора C6, начинает открываться транзистор VT1, а значит, уменьшается сопротивление его перехода эмиттер-коллектор. Это сопротивление, в совокупности с сопротивлением введённой части подстроечного резистора R13, определяет постоянную времени заряда конденсатора C7. А от неё, в свою очередь, зависит яркость лампы. Чем больше постоянная времени R13-C7, тем меньше мощность, отдаваемая в нагрузку, и наоборот. Такой способ управления яркостью лампы называется фазоимпульсным.

При достижении на конденсаторе C7 напряжением порогового значения элемента DD1.3, на его выходе формируется отрицательный перепад, который дифференцируясь цепочкой С8, R14 и инвертируясь элементом DD1.4 приводит к открыванию транзистора VT2 и симистора VS1. Открытый симистор подключает лампу накаливания к сети и лампа зажигается. Яркость лампы накаливания можно установить резистором R13 в пределах 0…70 процентов, чего вполне достаточно для освещения лестничной площадки. Одновременно при яркости не более 70 процентов обеспечивается наиболее благоприятный режим работы нити лампы накаливания.

При отсутствии звуковых сигналов, конденсатор C10 медленно заряжается через резистор R17, поскольку на выходе элемента DD2.3 поддерживается уровень лог.1. При достижении на конденсаторе C10 напряжением порогового значения элемента DD2.4, на его выходе формируется уровень лог.0, что индицирует погасший светодиод, а на выходе элементов DD2.5, DD2.6 устанавливается уровень лог.1, который через диод VD8 быстро разряжает конденсатор С6. Транзистор VT1 при этом закрывается и периодический заряд конденсатора С7 прекращается. Поскольку напряжение на входах элемента DD1.3 при этом остаётся всегда меньше порогового, формирование импульсов управления симистора также прекращается и лампа гаснет. Таким образом, время свечения лампы с заданной яркостью при первом включении автомата, при отсутствии звуковых сигналов, определяется постоянной времени элементов R17, C10.

При появлении звуковых сигналов (звуке шагов, разговоре, открывании дверей) на выходе микрофона формируется переменное напряжение амплитудой несколько милливольт. Оно усиливается двухкаскадным усилителем переменного напряжения на ОУ DA1.1 и DA1.2, выпрямляется диодами VD9, VD10 и сглаживается конденсатором С16, выполняющим роль интегратора. Далее выпрямленное напряжение через резистор R29 поступает на вход одновибратора, выполненного на элементах DD2.1, DD2.2. Этот одновибратор формирует короткий положительный импульс, который инвертируясь элементом DD2.3, через диод VD7 быстро разряжает конденсатор C10 и перезапускает таймер. При этом начинается отсчёт нового временного интервала, длительность которого можно выбирать в пределах от 1 сек до 1 мин подстроечным резистором R17. Практическое значение имеет временной интервал длительностью от 15 сек до 1 мин, который устанавливают при окончательной настройке автомата. Срабатывание таймера индицируется зажиганием светодиода HL1. При этом время включения лампы накаливания в пределах десятых долей секунды устанавливают резистором R19 таким образом, чтобы оно было визуально заметно.

Конструкция и детали. Автомат собран на печатной плате из двустороннего фольгированного стеклотекстолита (рис.2) толщиной 1,5 мм из квадратной заготовки размерами 78 х 78 мм.

Для установки в стандартную пластмассовую сетевую разветвительную коробку типа КЭМ5-10-7 в квадратной заготовке вырезаются уголки размерами 13×13мм. В автомате применены постоянные резисторы типа МЛТ-0,125, МЛТ-2 (R1…R4), МЛТ-0,5 (R6, R7), подстроечные — СП3-38б в горизонтальном исполнении, электролитические конденсаторы — типа К50-35 или аналогичные импортные, неполярные — К10-17. Четыре мощные двухваттные резистора R1…R4 можно заменить одним пятиваттным сопротивлением 18…22 кОм. Микрофон может быть типа CZN-15E, МКЭ-332, МКЭ-333, МКЭ-389-1 (используются в телефонии). На месте транзистора VT1 может работать импортный BC557C или отечественный КТ3107 с индексами «ГМ» или «ЕМ». Транзистор VT2 MJE13001 заменим на КТ538А. На месте VD2 должен работать стабилитрон обязательно с напряжением стабилизации 10В, например, BZX85C10, Д814В, КС510А, иначе потребуется подбор сопротивлений делителя R8-R9. Диоды VD4. VD8 — любые маломощные кремниевые из серий КД503, КД521, КД522. Диоды выпрямителя VD9, VD10 должны быть из серий Д2, Д9 или аналогичные маломощные, но обязательно германиевые. Диодный мост VD1 использован типа KBP210, интегральный стабилизатор — КР1181ЕН5А (78L05). На месте VS1 могут работать симисторы из серий ВТ137, ВТ138, ВТ139 с минимально допустимым напряжением не менее 400В. Светодиод желательно использовать сверхъяркий красного цвета свечения. В качестве теплоотвода используется сама печатная плата, в которой предусмотрено отверстие диаметром 3 мм для фиксации симистора. Все ИМС серии КР1564 (74HCxx) заменимы на соответствующие аналоги серии КР1554 (74ACxx).

Настройка автомата заключается в установке требуемой яркости с помощью резистора R13, времени нарастания яркости лампы от нуля до заданного значения — с помощью резистора R19, чувствительности усилителя — с помощью резистора R24, и времени выдержки таймера — с помощью резистора R17. При мощности лампы накаливания более 100 Вт симистор необходимо установить на небольшой дополнительный теплоотвод из алюминиевой пластины.

Отзывы и вопросы по усовершенствованию данного устройства читатели могут направлять в комментарии или через личные сообщения на сайте.

Акустический автомат лестничного освещения на симисторе

Автомат лестничного освещения с микрофоном и функцией таймера

Автор: Одинец Александр Леонидович
Опубликовано 25.10.2011
Создано при помощи КотоРед.

Аннотация. Как известно, срок службы лампы накаливания во многом зависит от режима ее работы. Ограничение начального тока в момент включения и плавное его увеличение позволяют избежать разрушения нити лампы накаливания. Применение тиристорного регулятора яркости с фазоимпульсным управлением в составе автомата лестничного освещения позволяет ограничить максимальное напряжение в вечерние часы, когда оно возрастает по причине уменьшения числа потребителей. Кроме того, такой автомат можно дополнить акустическим датчиком и функцией таймера, что позволит при появлении звукового сигнала включать лампу накаливания с максимальной яркостью на время от 15 секунд до 10 минут.

Общие сведения. Конструкции, рассматриваемые в данной статье, представляют собой, так называемые, «двухполюсники», что позволяет включать их последовательно с лампой накаливания без необходимости дополнительной проводки. Устройства можно разместить в любом удобном месте, обеспечив хорошую вентиляцию коммутирующим элементам в целях пожарной безопасности.

В качестве базового схемотехнического решения автомата лестничного освещения используется тиристорный регулятор яркости [1] с некоторыми изменениями (рис. 1). В частности, два транзистора КТ361, образующие составной, заменены одним из серии КТ3107 с большим коэффициентом усиления, а для уменьшения времени разрядки конденсатора С1 после выключения питания введен резистор R2.

Регулятор обеспечивает плавное нарастание тока в момент включения, в течение 1 сек, что исключает превышение его максимально допустимого значения, благодаря плавному разогреву нити накаливания. Максимальное напряжение в нагрузке задается резистором R6. Это значение можно выбрать в пределах 80…90%, что исключает превышение максимально допустимого напряжения в вечерние часы, когда число потребителей сокращается, и напряжение в сети возрастает.

Автомат «мягкая» нагрузка в электросети» (рис. 1) использует фазоимпульсное управление моментом включения тиристора, что определяет мощность, отдаваемую в нагрузку. Сущность фазоимпульсного метода заключается в изменении момента времени открывания тиристора, считая с момента перехода сетевого напряжения через ноль. Чем раньше открывается тиристор, тем больше мощность, отдаваемая в нагрузку.

В начальный момент времени, когда сетевое напряжение близко к нулю, конденсатор C2 разряжен, транзисторы VT2, VT3 и тиристор VS1 закрыты. После завершения зарядки конденсатора C1 транзистор VT1 полностью открыт, и момент открывания тиристора определяется только постоянной времени цепи R5-R6-C2. По мере заряда конденсатора С2, падение напряжения на эмиттерном переходе транзистора VT2 возрастает. При достижении значения около 0,6 В, начинает приоткрываться транзистор VT3, поскольку в его базовой цепи начинает протекать ток. Это приводит к еще большему увеличению тока базы транзистора VT2 и лавинообразному включению двух последних и тиристора. Момент появления тока управляющего электрода тиристора VS1 определяет мощность, отдаваемую в нагрузку.

Конструкция и детали. Автомат собран на печатной плате (рис. 2) из двухстороннего фольгированного стеклотекстолита толщиной 1,5 мм в виде правильного восьмиугольника, вписанного в квадрат со стороной 65 мм. Можно, конечно, использовать круглую заготовку диаметром 70 мм.

Печатная плата предназначена для установки в стандартную сетевую разветвительную коробку с внутренним диаметром 70 мм. Транзисторы VT1, VT2 могут быть любыми из серии КТ3107, VT3 — КТ3102. Стабилитрон VD1 заменим на Д814Г, КС512, КС515. Диод VD2 — любой кремниевый. Тиристор VS1 может быть из серий КУ201, КУ202 с индексами К, Л, М, Н. Диоды КД226 с индексами Г, Д, Е. Предохранитель FU1 устанавливается на держатель.

Принцип работы. Схема электрическая усовершенствованного варианта автомата лестничного освещения, дополненного микрофоном и функцией таймера, приведена на рис. 3.

В его составе используется тот же тиристорный регулятор яркости с фазоимпульсным управлением, но для нормальной работы автомата и обеспечения питающих напряжений в состав регулятора введена цепочка последовательно включенных резисторов R30-R31, задающая начальную яркость свечения лампы накаливания на уровне 10…15%. Это необходимо для получения стабильных напряжений «+5» и «+10В» источника питания в режиме ожидания. В момент замыкания цепи питания сопротивление нити лампы накаливания максимально, и поскольку в состав параметрического стабилизатора введены балластные конденсаторы C16, C17 относительно небольшой емкости, зарядка конденсатора C15 происходит не сразу, а в течение десятых долей секунды. По этой причине постоянная времени интегрирующей цепи R13-C10 должна быть несколько больше времени установления питающего напряжения «+5» для обеспечения надежного обнуления счетчика DD2 в момент включения питания. После установления питающего напряжения «+5», на входе инвертирующего элемента DD1.2 с триггером Шмитта еще некоторое время (определяется номиналами R13, C10) поддерживается уровень логического нуля, который после инвертирования этим элементом обнуляет счетчик DD2. После завершения зарядки конденсатора С10 на работу устройства он влияния не оказывает, поскольку диод VD5 закрыт.

Читайте также  Соединение плоских кабелей

После установки счетчика DD2 в нулевое состояние на его выходе «Q12» (вывод 1) старшего разряда появляется уровень нуля, который, инвертируясь элементом DD1.3, открывает ключевой транзистор VT1. Нижний вывод резистора R24 оказывается подключенным к общему проводу и происходит зарядка конденсатора C18. Яркость лампы накаливания возрастает до максимального значения, которое задается сопротивлением резистора R29. Для указанного на схеме номинала R29 максимальное значение яркости составляет около 80%. Таким образом, при первом включении устройства лампа накаливания горит с максимальной яркостью 80% в течение заданного интервала времени. Большую выходную мощность регулятора (до 99%) можно обеспечить, только включив его по схеме «трехполюсника». Для автомата лестничного освещения это не принципиально, поскольку большой яркости освещения обычно не требуется, но, в случае необходимости, компенсировать потерю яркости можно за счет установки лампы накаливания большей мощности.

Одновременно уровень «единицы» с выхода “Q12” (вывод 1) счетчика DD2 поступает на катод диода VD6, смещает его в обратном направлении и разрешает работу генератора, собранного на элементах DD1.5, DD1.6, R19…R21, С11. Импульсы положительной полярности являются счетными для DD2, который при достижении 2048 состояния формирует на выходе старшего разряда «Q12» (вывод 1) уровень «единицы». Этот уровень, инвертируясь элементом DD1.3, приводит к остановке генератора. Этот же уровень закрывает транзистор VT1 и переводит автомат в режим ожидания. В таком состоянии минимальная яркость свечения лампы накаливания определяется положением движка подстроечного резистора R31 и может быть выбрана в диапазоне 10…50%.

Микрофонный усилитель выполнен на ОУ DA1.1 и DA1.2. Его суммарный коэффициент усиления может достигать 5000, поэтому для срабатывания автомата с выхода микрофона достаточно переменного напряжения амплитудой 1 мВ. Чувствительность усилителя можно настроить резистором R5 таким образом, чтобы автомат не срабатывал от звука шагов на лестничной площадке, а только на любую голосовую команду. В таком случае, можно установить яркость в режиме ожидания, к примеру, 50%, и в случае необходимости получения дополнительного освещения «хозяином» лестничной площадки, подать любую голосовую команду.

Для повышения устойчивости на высоких частотах и устранения самовозбуждения в микрофонный усилитель введены конденсаторы C4, C6. Усиленное переменное напряжение с выхода DA1.2 через разделительный конденсатор С7 поступает на выпрямитель, собранный на диодах VD1, VD2. Выпрямленное напряжение сглаживается конденсатором C8 и поступает на одновибратор-формирователь импульса сброса, выполненный на элементах DD1.1, DD1.2, C9, VD3, VD4, R11, R12. При достижении напряжения на конденсаторе C8 порога переключения элемента DD1.1 (примерно 2,6 В), на выходе элемента DD1.2 формируется короткий положительный импульс, длительностью около 8 мкс, который, каждый раз при появлении звукового сигнала, приводит к обнулению счетчика DD2 и перезапуску таймера. Визуальную оценку прошедшего времени выдержки (при настройке таймера) производят по линейке светодиодов HL1…HL4 (HL1, HL2 — зеленые, HL3 — желтый и HL4 — красный). Если требуется визуально оценивать прошедшее время выдержки на расстоянии, необходимо уменьшить сопротивление резисторов R15…R18 до 4,7 кОм, а емкость балластных конденсаторов C16, C17 увеличить до 0,47 мкФ. Время задержки таймера можно увеличить до 3,5 часов заменой конденсатора C11 на больший, номиналом до 2,2 мкФ, а минимальную задержку изменить подбором резистора R19.

Следует отметить еще одну интересную особенность микрофонного усилителя (DA1.1, DA1.2). Если увеличить номиналы конденсаторов: C4=0,01 мкФ; С5=2,2 мкФ; С6=6800 пФ; С7=47 мкФ и установить автомат внутри помещения замкнутого объема, то усилитель не будет срабатывать на звуковые сигналы, а только на изменение давления воздуха даже при бесшумном открывании и закрывании дверей.

Конструкция и детали. Автомат собран на печатной плате (рис. 4) из двухстороннего фольгированного стеклотекстолита толщиной 1,5 мм из квадратной заготовки размерами 78×78 мм.

Для установки в стандартную сетевую разветвительную коробку типа КЭМ5-10-7 в квадратной заготовке вырезаются уголки размерами 13×13 мм. В автомате применены постоянные резисторы МЛТ-0,125, МЛТ-2 (R34), подстроечные СП3-38б в горизонтальном исполнении, балластные конденсаторы С16, С17 типа К73-17 с номинальным напряжением 400В, остальные неполярные — К10-17, оксидные — К50-35 или импортные. Микрофон может быть типа CZN-15E, МКЭ-332, МКЭ-333, МКЭ-389-1. На месте VD12, VD13, как и в предыдущем варианте, могут работать Д814Г(Д), КС512, КС515. Транзисторы VT1, VT4 могут быть из серии КТ3102; VT2, VT3 — КТ3107. ОУ DA1 заменим TL072, TL082; ИС DD1 КР1564ТЛ2 (74HC14), содержащая шесть триггеров Шмитта, заменима CD40106, счетчик КР1561ИЕ20 (CD4040) заменим КР1564ИЕ20 (74HC4040).

Настройка второго варианта устройства заключается в установке минимальной яркости в режиме ожидания с помощью резистора R31, чувствительности микрофонного усилителя — R5 и необходимой выдержки времени — R21. Задержку срабатывания с момента появления звукового сигнала или голосовой команды можно увеличить подбором конденсатора C8. Если при увеличении номиналов конденсаторов C16, C17 до 0,47мкФ будет нечётко обнуляться счетчик DD2 в момент включения питания, нужно увеличить емкость конденсатора C10 до 4,7—10 мкФ. При мощности лампы накаливания более 75 Вт тиристор необходимо установить на теплоотвод.

Литература.

1. «Регулируем яркость светильника». — «Радио», 1992г, №1, с.22.

—>ЗАМЕТКИ ДЛЯ МАСТЕРА —>

Фотореле на симисторе

На схеме (рис.1) показана конструкция автоматического устройства включения и выключения уличного освещения. В предлагаемой конструкции функцию управления выполняет симистор. Благодаря тому, что его работа не зависит от полярности приложенного напряжения, отпадает необходимость в мощном двухполупериодном выпрямителе. Это позволяет упростить конструкцию автомата и уменьшить его габариты. Предлагаемое устройство рассчитано на управление источниками света общей мощностью до 400 Вт.

Фоторезистор R1 вместе с резисторами R2 и R3 образуют делитель напряжения, который определяет ток базы транзистора VT1. В дневное время суток, когда фоторезистор освещен, его сопротивление сравнительно невелико, поэтому транзистор VT1 открыт и насыщен, а VT2 закрыт. Коллекторный ток транзистора VT2, а следовательно, и ток управляющего электрода симистора практически равны нулю. Симистор, таким образом, закрыт, и ток через нагрузку не протекает. С уменьшением освещенности сопротивление фоторезистора возрастает, и ток базы транзистора VT1 начинает уменьшаться. При достижении определенного значения транзистор VT1 выходит из насыщения и начинает закрываться. Увеличивающееся падение напряжения на резисторе R7 ускоряет закрывание транзистора VT1 и открывание VT2. Ток управляющего электрода симистора, протекающий через открытый транзистор VT2 и резисторы R6, R7, поддерживает симистор открытым на протяжении обоих полупериодов сетевого напряжения. Следовательно, лампы сразу начинают с ветить в полный накал. Процесс выключения фотореле происходит в обратном порядке. Порог срабатывания фотореле устанавливают переменным резистором R2, а резистор R3 служит для ограничения тока делителя при попадании на фотоприемник прямых солнечных лучей. Резистор R6 определяет ток управляющего электрода симистора, который при открытом транзисторе VT2 должен быть больше тока включения симистора, но меньше допустимого коллекторного тока транзистора VT2. Резистор R5 уравнивает напряжение на управляющем электроде и катоде симистора, когда транзистор VT2 закрыт. Это обеспечивает надежное выключение с имистора и помехоустойчивость фотореле в целом. В устройстве использованы транзисторы VT1 и VТ2—КТ315Г или КТ315Е с коэффициентом передачи тока не менее 60.

Устройство, собранное безошибочно и из элементов с указанными на схеме типономиналами, в налаживании не нуждается, необходимо только установить порог срабатывания. Монтируют фотореле в таком месте, чтобы свет от ламп, которыми оно управляет, не попадал на фотоприемник. Во избежание попадания в коробку воды и посторонних предметов входной патрубок ее должен быть направлен вниз, а крышку после установки герметизируют водостойким лаком или клеем.

Автомат – выключатель освещения

Это устройство (рис.2) предназначено для автоматического включения электроосвещения при наступлении темноты и его выключения в светлое время суток.

Его светочувствительным прибором является фоторезистор R 1, включенный на входе порогового устройства (элементы DD 1.1, DD 1.3). При нормальной освещенности сопротивление фоторезистора мало, поэтому на выходе элемента DD 1.3 будет напряжение высокого уровня и генератор импульсов, собранный на элементах DD 1.2, DD 1.4, не работает. На выходе генератора транзисторы VT 1, VT 2 выполняют функцию согласующего устройства с симистором. В таком режиме работы устройства на управляющий электрод симистора VS 1 никаких сигналов не подается, поэтому он закрыт и осветительная лампа HL 1 обесточена.

С наступлением темного времени суток сопротивление фоторезистора возрастает, напряжение на выходе порогового устройства уменьшается. И когда оно уменьшится до низкого уровня, генератор начнет работать и на выходе согласующего устройства появятся импульсы с частотой следования около 1 кГц. Так как эти импульсы разнополярные, то положительные импульсы замыкаются на корпус через диод VD 3, а отрицательные – поступают на управляющий электрод симистора.

При этом симистор открывается практически в самом начале каждого полупериода сетевого напряжения, поэтому осветительная лампа светится на полную мощность.

Выпрямитель автомата образуют стабилитрон VD 2, диод VD 1 и конденсатор С4, который гасит избыточное напряжение сети. Пороговое устройство имеет гистерезис своей характеристики, что обеспечивает устойчивое срабатывание автомата при переходе из одного режима работы в другой.

Утром, когда естественная освещенность увеличивается, происходит обратный процесс, и осветительная лампа гаснет.

Фотодатчик размещают в месте, защищенном от прямых солнечных лучей, атмосферной влаги и света осветительных ламп. Его можно поместить в стеклянную пробирку, которая затем надежно герметично закупоривают. Если мощность осветительных ламп больше 500 Вт, то симистор устанавливают на теплоотводящий радиатор.

Налаживание автомата сводится к установке резистором R 2 требуемого порога срабатывания.

«Конструкции на логических

элементах цифровых микросхем»

Автомат уличного освещения

Схема автомата, позволяющего включать вечером и выключать утром уличное освещение, показана на рисунке 3.

Датчиком освещения является фоторезистор R 4. Когда он затемнен, его сопротивление велико (несколько мегаом), на входах логического элемента DD 1.1 – напряжение высокого уровня, такое же напряжение на выходе элемента DD 1.2. Транзистор VT 1 и VS 1 открыты, и уличные осветители EL 1 включены.

При наступлении рассвета сопротивление фотодатчика R 4 уменьшается, логические элементы DD 1.1 и DD 1.2 переключаются в противоположные состояния, транзистор VT 1 и тиристор VS 1 закрываются и фонари на улице гаснут.

На логических элементах DD 1.1, DD 1.2 и резисторах R 2, R 3 выполнен триггер Шмитта. Это устройство, как и обычный (счетный) триггер, обладает двумя устойчивыми состояниями. Но в отличии от счетного триггера, состояние которого изменяется после прихода очередного импульса на вход, триггер Шмитта переключается при изменении уровня входного напряжения. Можно так подобрать резисторы R 2 и R 3, что пороги переключения при увеличении входного напряжения и при его уменьшении не будут равны между собой. Например, для нашего триггера при увеличении входного напряжения порог переключения может составлять 3В, а при уменьшении напряжения 2В. Разность порогов переключения называют гистерезисом триггера. Гистерезис тем больше, чем больше отношение R 2/ R 3.

Если в автомате не использовать триггер Шмитта (т.е. резистор R 3 исключить, а R 2 замкнуть накоротко), то при изменении освещенности может наблюдаться мерцание осветительных ламп, при этом на выходе элемента DD 1.2 будет напряжение, находящееся между напряжениями низкого и высокого уровней. В триггере Шмитта такого не может быть, поскольку обратная связь через резистор R 3 с выхода элемента DD 1.2 на вход элемента DD 1.1 ускорит процесс переключения, сделает его лавинообразным. Такую обратную связь называют положительной.

В качестве датчика освещенности можно использовать фоторезисторы ФС-К (с любыми цифрами), а также фотодиоды ФД-1, ФД-2, ФД-3 (подключают катодом к резисторам R 1, R 2).

Фотодатчик следует располагать в таком месте, куда не попадает прямой свет фонарей EL 1, иначе автомат будет работать неустойчиво. Резистором R 1 можно изменять уровень освещенности, при котором включаются и выключаются осветители. Разницу в порогах включения и выключения осветительных ламп можно изменять подбором резистора R 2.

Максимальная мощность осветительных ламп определяется типами тиристора VS 1 и диодов VD 2- VD 5. В данном случае она составляет 2 кВт. Тиристор и диоды устанавливают на радиаторы.

Фотореле в подъезд

Схема прибора, показанная на рис.4, устанавливается в подъезде жилого дома и включает в нем освещение с наступлением темноты, а на рассвете выключает его.

При освещении фоторезистора R 4 его сопротивление снижается, падение напряжения на нем уменьшается, транзистор VT 1 закрывается, реле К1 и лампа EL 1 выключаются, при затемнении фоторезистора все происходит в обратном порядке и лампа включается. Конденсатор С1 – К73-17. Его можно заменить пленочным конденсатором зарубежного производства на напряжение не менее 630 В постоянного или 275 В переменного тока. Вместо зарубежного транзистора SS 9013 H подойдет КТ680А. Фоторезистор установлен импортный. Его сопротивление, равное 30 кОм в темноте, при дневном свете уменьшается до 6 кОм.

Читайте также  Как рассчитать УЗО для дома?

Реле использовано с обмоткой сопротивлением 1600 Ом. Измеренный мультиметром ток срабатывания – 2,58 мА. Контакты реле должны быть рассчитаны на коммутацию соответствующей нагрузке.

Простой выключатель ночного освещения

Одно из достоинств микросхемы – фазового регулятора КР1182ПМ1 в том, что для управления нужно изменять сопротивление между двумя выводами 6 и 3, на которых имеется постоянное напряжение. Это позволяет вместо переменного резистора, положенного по типовой схеме, использовать различные схемы на транзисторах и цифровых микросхемах.

На рисунке 5 приводится схема простого сумеречного выключателя, включающего на участке с наступлением темноты, и выключающего его на рассвете. Благодаря тому, что управляет лампой не ключ, а фазовый регулятор, лампа включается не сразу, а постепенно. Это способствует долговечности лампы накаливания.

Резистор R 2 служит для установки порога включения / выключения, резистор R 3 – для установки яркости максимальной освещенности. Мощность лампы не более 150 Вт.

Автомат уличного освещения

На рис.6 показана схема фотореле, предназначенного для включения света в темное время суток и включение на рассвете.

Рис.6 Принципиальная схема и печатная плата фотореле

Фотодатчик – VT 1 используется с «шариковой» компьютерной мыши и представляет собой пару фототранзисторов без базовых выводов, расположенных в одном корпусе. Фототранзисторы структуры n — p — n , коллектора соединены вместе и выведены на средний вывод корпуса, а эмиттеры – на крайние.

За включение света отвечает левый по схеме фототранзистор датчика VT 1. Порог снижения освещенности, при достижении которого должна включится осветительная лампа, устанавливается резистором R 1.

Схема выключения (на правом транзисторе VT 1) работает противоположным образом. Подстроечным резистором R 2 устанавливают уровень, при возрастании освещенности до которого осветительная лампа должна выключиться.

Автомат включения уличного освещения на транзисторах

Датчик фотореле размещается на улице, защитив его от прямого попадания искусственного света. Реле срабатывает с наступлением ночного времени суток и автоматически включает питание лампы уличного освещения или лестничной клетки, а утром выключать его.

Принципиальная схема представлена на рис.7.

Схема фотореле обладает неплохой чувствительностью, так как для его питания используется более высокое напряжение – около 18В. Контакты К1.1 электромагнитного реле К1, используемого в автомате, нормально замкнутые.

В ночное и вечернее время суток фоторезистор R 1 (ФСК-1) освещен очень слабо и его сопротивление составляет несколько сотен килоом. При этом коллекторные токи транзистора VT 1, в базовую цепь которого включен фоторезистор, и транзистора VT 2, база которого соединена непосредственно с эмиттером первого транзистора, не превышает тока отпускания электромагнитного реле К1. В это время осветительная лампа Н1, подключенная к электроосветительной сети через нормально замкнутые контакты К1.1 реле, горит.

С наступлением рассвета фоторезистор освещается все сильнее и его сопротивление уменьшается до 80 – 100кОм. При этом токи транзисторов усилителя увеличиваются. При токе 20 – 25 мА реле срабатывает и его контакты, размыкаясь, разрывают цепь питания осветительной лампы. А вечером, когда сопротивление фоторезистора снова начнет увеличиваться, а коллекторные токи соответственно уменьшаться, реле отпустит и замыкающими контактами включит освещение.

Выпрямитель автомата двухполупериодный. Выпрямленное напряжение сглаживается конденсатором С1 и стабилизируется двумя стабилитронами V 5 и V 4 серии Д809 (можно Д814Б). Номинальное напряжение конденсатора С1 не должно быть меньше 25В.

В автомате используется реле типа РЭС-22 (паспорт РФ4.500.131), РСМ-1 (паспорт Ю.171.81.37) или другое аналогичное с обмоткой сопротивлением 650-750 Ом.

Для увеличения задержки времени выключения осветительной лампы питающее напряжение автомата надо уменьшить на 3-4 В, а для уменьшения, т.е. более раннего выключения, наоборот, увеличить на 3-4 В. Это можно сделать при использовании в блоке питания стабилитронов с другими напряжениями стабилизации: в первом случае – стабилитронов Д808 или одного (вместо двух) стабилитрона Д813, во втором – трех стабилитронов Д808 или двух стабилитронов Д811 или Д814Г. Чувствительность автомата можно также регулировать подбором резистора R3 .

Акустический автомат лестничного освещения на симисторе

Аннотация

Статья рассматривает автомат, включающий нагрузку (лампу накаливания) на заданное время от 10 сек до 2 мин, по звуковому сигналу. Применение симистора в качестве коммутирующего элемента позволило сократить число силовых элементов, устанавливаемых на теплоотвод, с пяти до одного.

Общие сведения

Часто на лестничных площадках, в подсобных помещениях, ванных комнатах и т.п. наблюдается ситуация, когда освещение забывают выключить и лампа долго горит без надобности, накручивая Киловатт-часы. Подобной ситуации можно избежать, если собрать несложный акустический автомат, включающий лампу по звуковому сигналу на заданное время. При этом длительность выдержки будет продлеваться по мере повторного поступления звуковых сигналов. Совсем не лишним будет дополнение такого автомата функцией плавного зажигания лампы, что позволит значительно увеличить срок её службы, благодаря ограничению броска тока в момент включения. Данный автомат можно использовать совместно также и с энергосберегающими лампами, установив регулятор времени задержки включения лампы в положение, соответствующее нулевому значению.

Схема электрическая принципиальная

Схема электрическая автомата приведена на рис.1. Автомат содержит: стабилизатор питания, собранный на элементах Cl, VD1. VD4, VD5, С2. С4, DA1; схему выделения моментов перехода сетевого напряжения через нуль на транзисторах VT1, VT2; схему управления симистором на транзисторах VT3. VT8 и логических элементах DD1.1 . DD1.4; усилитель переменного напряжения на транзисторах VT9, VT10; одновибратор-формирователь импульса сброса таймера на элементах DD2.1, DD2.2 и собственно таймер, состоящий из задающего генератора на элементах DD2.3, DD2.4 и счётчиков DD3.1 и DD3.2.

При появлении на входе микрофона M1 звука шагов, разговоре, хлопке закрываемой двери и т.п. переменное напряжение амплитудой несколько милливольт усиливается двухкаскадным транзисторным усилителем VT9, VT10 до уровня 2. 3 В и, проходя через разделительный конденсатор С13, запускает одновибратор, который на выходе элемента DD2.2 формирует короткий положительный импульс, обнуляющий счётчики DD3.1 и DD3.2 и тем самым перезапускающий таймер. При этом на выходе самого старшего разряда счётчика DD3.2 (вывод 8) появляется уровень лог.О, который инвертируясь элементом DD2.5, смещает в обратном направлении диод VD10, разрешая работу генератора. При первой подаче питающего напряжения одновибратор срабатывает независимо от появления звуковых сигналов, благодаря интегрирующей цепочке C16-R31, которая формирует короткий отрицательный импульс, воздействующий на вход элемента DD2.2 через развязывающий диод VD9. Диод VD7 также является развязывающим.

Прямоугольные импульсы с выхода элемента DD2.4 увеличивают состояние счётчиков DD3.1, а затем DD3.2, о чём свидетельствует мигание зелёного светодиода HL1 и последовательное зажигание HL2. HL4 в соответствии с появлением двоичных кодов на выходах счётчика DD3.2.

Уровень лог.О с выхода самого старшего разряда счётчика DD3.2 (вывод 8) открывает транзистор VT3, что приводит к зарядке конденсатора С5 через резистор R6 и открыванию транзистора VT4. При этом яркость лампы накаливания определяется введённой частью переменного резистора R9 и ёмкостью конденсатора Сб. Следует заметить, что транзисторы VT5 и VT6 в данный момент закрыты, уровнем лог.1, приходящей на базу транзистора VT6 с выхода логического элемента DD2.5.

Работает схема регулятора яркости следующим образом. При положительной полуволне сетевого напряжения открывается транзистор VT1 и на верхнем выводе резистора R4, а значит на входе элемента DD1.1 присутствует напряжение, превышающее пороговое значение входного уровня лог. 1. На выходе этого элемента присутствует уровень лог.О и транзистор VT7 закрыт. Такая же ситуация происходит и при отрицательной полуволне сетевого напряжения, только при этом открывается транзистор VT2, a VT1 закрывается. В случае, когда сетевое напряжение близко к нулю, оба транзистора VT1 и VT2 закрываются и на резисторе R5, а значит на входе элемента DD1.1 появляется уровень лог.0. Короткий положительный импульс с выхода элемента DD1.1 открывает транзистор VT7 и, уже усиленный, через диод VD6 быстро заряжается конденсатор Сб. При появлении положительной или отрицательной полуволны сетевого напряжения транзистор VT7 закрыт, и конденсатор С6 начинает постепенно разряжаться со скоростью, зависящей от введённой части подстроечного резистора R9, определяющим яркость лампы накаливания.

Когда конденсатор С6 разрядится до порогового напряжения переключения элемента DD1.2, он переключится в состояние лог.1 на выходе, а элемент DD1.3 — в состояние лог.0. Отрицательный перепад напряжения с выхода элемента DD1.3, проходя через дифференцирующую цепочку C7-R14 и инвертирования элементом DD1.4, вызовет появление на его выходе короткого положительного импульса длительностью около 12 мкс, который откроет мощный транзистор VT8, а вслед за ним и симистор VS1. Лампа EL1 будет светиться с яркостью, задаваемой подстроечным резистором R9.

При увеличении сопротивления резистора R9 будет возрастать постоянная времени C6-R9 (конечно же, с учётом сопротивления резисторов R10, R13). Следовательно будет возрастать время задержки включения симистора, считая с момента перехода сетевого напряжения через ноль, поэтому яркость лампы будет уменьшаться. И наоборот, при уменьшении сопротивления резистора R9, яркость лампы будет возрастать.

Если поступление звуковых сигналов будет продолжаться, одновибратор будет продолжать формировать обнуляющие импульсы, и время выдержки будет продлеваться. Если поступление звуковых сигналов прекратится, одновибратор будет оставаться в исходном состоянии и, когда счётчик DD3.2 достигнет своего восьмого состояния, уровень лог.1, инвертируясь элементом DD2.5 откроет диод VD10 и, тем самым, заблокирует работу генератора. Счётчик DD3.2 останется в восьмом состоянии и уровнем лог.1 с выхода своего самого старшего разряда (вывод 8) закроет транзистор VT3, а транзисторы VT6 и VT5, в свою очередь, будут открыты уровнем лог.0, приходящим на базу VT6 с выхода элемента DD2.5. При этом конденсатор С5 быстро разрядится через резистор R8, транзистор VT4 закроется, и задержка включения симистора будет определяться теперь постоянной времени C6-R13. Но лампа теперь зажигаться не будет в каждом полупериоде сетевого напряжения, поскольку постоянная времени C6-R13 достаточно велика и конденсатор С6 не будет успевать разряжаться до порогового напряжения переключения логического элемента DD1.2. Таким образом, лампа накаливания будет выключена до появления следующего звукового сигнала.

Конструкция и детали

Автомат собран на печатной плате из двустороннего фольгированного стеклотекстолита (рис.2) толщиной 1,5 мм из квадратной заготовки размерами 78 х 78 мм.

Для установки в стандартную пластмассовую сетевую разветвительную коробку типа КЭМ5-10-7 в квадратной заготовке вырезаются уголки размерами 13×13мм. В автомате применены постоянные резисторы типа МЛТ-0,125, МЛТ-0,5 (R3), подстроечные — СПЗ- 38б, электролитические конденсаторы — типа К50-35 или аналогичные импортные, неполярные — К10-17. Микрофон может быть типа CZN-15E, МКЭ-332, МКЭ-333, МКЭ-389-1 (используются в телефонии). На месте стабилитрона VD5 могут работать Д814В (Г, Д), Д810, Д811, Д812, а также КС510, КС512 или аналогичные маломощные с напряжением стабилизации 10. 12 В. Диоды VD6. VD10 — любые маломощные кремниевые из серий КД503, КД521, КД522. Диоды моста VD1. VD4 могут быть из серии КД226 с индексами «Г», «Д», «Е», а также FR157, FR207 или другие с минимально допустимым током не менее 1 А и обратным напряжением не менее 400 В. На месте симистора VS1 могут работать ВТ137, ВТ138, ВТ139 с минимально допустимым напряжением не менее 400В. Транзисторы VT9, VT10 должны быть из серии КТ3102 с индексом «ЕМ» или импортные ВС547С, но обязательно со статическим коэффициентом передачи тока не менее 400; VT1. VT3, VT6 — из серий КТ3107 с любым буквенным индексом; VT4, VT5, VT7 — из серий КТ3107, КТ503 с любым буквенным индексом, VT8 — из серий КТ815, КТ817. Микросхемы серии КР1564 заменимы на ИМС серии КР1554.

Доработка автомата включения лестничного освещения

В материалах своей статьи автор экспериментально подтвердил тот факт, что симисторы крайне неустойчиво работают как коммутаторы нагрузки, имеющей индуктивный характер. Практически добиться положительных результатов очень сложно, а в подавляющем большинстве случаев невозможно.

При этом симисторы отлично справляются с коммутацией на переменном токе активной нагрузки, например, ламп накаливания. Другим заключением автора публикации [2] было то, что наиболее «беспроблемным» вариантом для коммутации мощной индуктивной нагрузки остается использование электромеханических реле.

Со сложностью коммутации индуктивной нагрузки симисторами пришлось столкнуться НЭ практике при экспериментах со схемой автомата кратковременного включения лестничного освещения [1] (рис.1). Эта схема действительно работала, но одна ее особенность вызывала «чувство неудовлетворенности инженера» – трансформатор питания Т1 и элементы управляющей симистором схемы являлись потребителями для питающей сети 230 В / 50 Гц 24 часа в сутки, что неэкономно, особенно в свете постоянно растущих тарифов на электроэнергию.
Очень заманчивым было бы подавать напряжение на трансформатор Т1 только на время, когда требуется, чтобы лампы накаливания в освещаемом подъезде дома светились, а с их погасанием отключать сетевое питание от трансформатора схемы управления.

Читайте также  Источник опорной частоты

Для этого первичная обмотка трансформатора Т1 во время экспериментов была включена параллельно лампам накаливания нагрузки схемы. Кнопка SB 1 теперь замыкает выводы А1-А2 силового симистора VS1. При этом не только начинали светиться лампы накаливания нагрузки устройства, но и подавалось питание (230 В) на первичную обмотку трансформатора Т1, и далее выпрямленное напряжение (порядка 20 В) поступало на схему управления.

Конденсаторы фильтра блока питания заряжались и обеспечивали поддержание схемы таймера в рабочем состоянии, а симистор VS1 оставался в проводящем состоянии и после отпускании кнопки SB1.

Пуск таймера происходил, но его отключение после отработки временного интервала стало проблематичным. Из-за индуктивной составляющей нагрузки симистора VS1, обусловленной значительной индуктивностью обмоток трансформатора Т1, переменные ток и напряжение в цепи симистора приобретали значительные фазовые сдвиги. После отработки временного интервала таймером лампы накаливания (нагрузки) вместо отключения начинали лишь периодически мигать.

Первоначально создавалось впечатление, что таймер вместо отключения лишь перезапускается, но это было не так. Достаточно было обратить внимание на светодиод индикации состояния таймера HL1 – после отработки выдержки времени таймером светодиод погасал. Значит, силовой симистор VS1 «не справляется» с отключением индуктивной нагрузки (трансформатора Т1). В доработанной схеме рис.2 имеется маломощное реле Р1. В исходном состоянии его контакты 1Р1 замкнуты и первичная обмотка трансформатора Т1 включена параллельно лампе накаливания устройства EL1.

Питание лампы EL1 и входное напряжение трансформатора Т1 коммутирует силовой симистор VS1. В исходном состоянии схемы симистор находится в выключенном состоянии. При этом не только не горит лампа EL1, но и практически нет напряжения на первичной обмотке трансформатора Т1. Выключенное состояние симистора VS1 обусловлено тем, что в этом режиме отсутствует питание излучающего светодиода оптопары U1. Соответственно, находится в непроводящем состоянии ее выходной маломощный оптосимистор.

При нажатии кнопки включения освещения SB1 выходной симистор оптопары U1 замыкается контактами кнопки. Это приводит к тому, что не только зажигается лампа накаливания EL1, но и подается сетевое напряжение на первичную обмотку трансформатора Т1. Появляется напряжение на вторичной обмотке трансформатора, заряжаются конденсаторы фильтра С1, С2 мостового выпрямителя VD1-VD4. Микросхема DA1 стабилизирует напряжение на уровне 12 В, заряжаются конденсаторы СЗ, С4.

Если теперь отпустить кнопку SB1, то оптосимистор U1 окажется во включенном состоянии, что гарантирует соединение вывода G управняющий электрод силового симистора VS1 через резистор R12 с его вторым анодом А2. Симистор переходит во включенное состояние (до этого он был зашунтирован кнопкой SB1) и сохраняет его до момента переключения компаратора DA2. При работе компаратора DA2 (в течение заданного времени свечения ламп накаливания) на его выходе (вывод 6) имеется высокий потенциал. Соответственно, будет заперт транзистор VT3 и обесточено реле Р1.

После отработки заданного таймером времени потенциал выхода 6 компаратора DA2 становится низким. Через резистор R10 и стабилитрон VD8 заряжается конденсатор С7. Через резистор R11 будет протекать базовый ток транзистора VT3, открывающий его, срабатывает реле Р1. Нормально замкнутые контакты 1Р1 реле размыкаются. Питание первичной обмотки трансформатора Т1 прекращается. За счет энергии конденсатора С7 и остаточного напряжения конденсаторов С2, С4 непродолжительное время реле Р1 остается во включенном состоянии, но этого времени оказывается достаточно для запирания силового симистора VS1.

Он переходит в выключенное состояние, и питание с первичной обмотки трансформатора Т1 и ламп Е1 окончательно снимается. Эксперимент показал, что при уменьшении емкости конденсатора С7 до 22 мкФ отключение симистора VS1 в этой схеме становится неустойчивым – реле Р1 начинает подрабатывать, а значительное увеличение емкости конденсаторов С7, С1 и СЗ (более указанных на схеме номиналов) устойчивой работы схемы не нарушает. Диоды VD6. VD9 способствуют быстро предупредить окружающих, что таймер отработал полный цикл перед выключением.

Анализ вышеописанной схемы позволяет сделать заключение, что она является частым случаем симисторной коммутации комплексной нагрузки. Лампы накаливания являются активной нагрузкой симистора, а трансформатор – индуктивной. При этом следует учитывать, что индуктивный ток первичной обмотки трансформатора Т1 был невелик из-за относительно небольшой мощности этого трансформатора. Это позволило применить в схеме слаботочное вспомогательное реле (Р1). Ток активной нагрузки симистора (ламп накаливания), естественно, был во много раз больше. Собственно, для его коммутации и использовался симистор.

Предупреждение

Еще раз напомним, что указанные на схемах симисторы типа ВТ 136-600Е по ТУ имеют максимальный рабочий ток 4 А. При необходимости обеспечения большего тока нагрузки для ламп накаливания необходимо использовать более мощные симисторы. Кроме того, необходимо учесть, что ток ламп накаливания, в момент начала их свечения, в несколько раз превышает их номинальный рабочий ток, что надо учитывать при выборе типа симистора. Любые симисторы в данном устройстве надо использовать с радиаторами охлаждения.

Автомат управления лестничным освещением с датчиком движения

Устройства, управляющие освещением лестницы в доме, не новы и многократно описаны в литературе и Интернете. Автор предлагает свой вариант на базе готового модуля HC-SR501 с пироэлектрическим датчиком движения.

Интернете достаточно сведений о его характеристиках, причём зачастую довольно противоречивых. Ввиду этого для получения правдоподобных сведений о возможностях модуля его характеристики пришлось перепроверять частично опытным путём, частично — путём анализа схемы. В результате автор пришёл к следующим значениям (правда, их с уверенностью можно отнести лишь к одному экземпляру модуля, подвергнутому испытаниям):

Параметры зоны обнаружения

пределы регулировки дальности, м . 3. 8

телесный угол, град. 140

Режимы срабатывания . одиночное, циклическое

«Мёртвое» время между сигналами тревоги, с . 2. 2,5

Пределы регулировки времени удержания сигнала тревоги, с . 5. 250

Уровни сигнала тревоги, В

Напряжение питания, В. 4,5. 12

Собственный ток потребления, мА . 0,06

Модуль имеет «ночной» режим работы, но для этого требуется установить в него фоторезистор.

В Интернете можно встретить информацию о работоспособности модуля HC-SR501 при напряжении питания 20. 30 В. Это не соответствует действительности, так как на его входе питания установлен оксидный конденсатор с номинальным напряжением 16 В. Поэтому разумно питать его напряжением не более 12 В.

Применённая в модуле микросхема формирует на своём выходе сигнал тревоги в уровнях трёхвольтной логики. Но между её выходом и выходным контактом OUT модуля включён резистор сопротивлением 1,5 кОм, поэтому нагрузочная способность модуля очень невелика.

В режиме одиночного срабатывания после первого обнаружения движущегося в чувствительной зоне предмета логический уровень напряжения на выходе модуля становится высоким и остаётся таким на 5. 250 с (время удержания устанавливают при налаживании), другие возможные в этот период обнаружения игнорируются. По истечении времени удержания уровень выходного сигнала возвращается к низкому, но следующее обнаружение становится возможным лишь после восстановления свойств датчика (это время называют «мёртвым»).

В режиме циклического срабатывания после первого обнаружения движения на выходе модуля также устанавливается высокий уровень на время удержания, однако дальнейшие срабатывания, произошедшие до истечения этого времени, начинают его отсчёт заново. В результате уровень на выходе остаётся высоким до тех пор, пока длительность паузы между последовательными обнаружениями движения не превысит время удержания.

На фотоснимках модуля, которые можно найти в Интернете, видна перемычка «MD», переставляя которую переключают режимы срабатывания. Однако в модуле, который имеется у автора, лишь обозначено место для её установки, а печатные проводники разведены так, что модуль всегда работает в режиме циклического срабатывания.

Рис. 1. Датчик движения

Под «ночным» режимом работы подразумевается блокировка срабатывания модуля в светлое время суток. Эта полезная функция позволяет экономить как электроэнергию, так и ресурс источников света. Для её реализации в отверстия, помеченные на плате модуля как «RL» (рис. 2), необходимо впаять фоторезистор. Никаких данных о его характеристиках и особенностях режима автору найти не удалось, однако установка фоторезистора GL5516 с темновым сопротивлением около 500 кОм дала вполне удовлетворительный результат. Срабатывать в светлое время суток модуль перестал, поэтому дальнейшие исследования в этом направлении не проводились.

Рис. 2. Плата модуля

Модуль HC-SR501 значительно облегчил создание автомата управления лестничным освещением. К нему пришлось добавить лишь коммутатор источника света и узел питания. Коммутатор было решено построить на симисторе, что сделало устройство более компактным, надёжным и бесшумным по сравнению с электромагнитным реле. Учитывая, что собственное потребление тока таким устройством невелико, для узла питания была выбрана бестрансформаторная схема. Это позволило уменьшить общие размеры устройства, принципиальная схема которого показана на рис. 3. Оно питается от сети 230 В, 50 Гц, потребляя в основном реактивную, не учитываемую бытовыми счётчиками, мощность около 5 В-А, и способно коммутировать лампы общей мощностью до 200 Вт.

Рис. 3. Принципиальная схема устройства

Бестрансформаторный узел питания (C2, VD1, VD2, с1) формирует постоянное напряжение 5 В. Коммутатор осветительных ламп построен на симисторе VS1, управляемом симисторным оптроном Ul. Оптроном в свою очередь управляет выходной сигнал модуля HC-SR501. Но управлять оптроном непосредственно модуль не может, поскольку минимальный ток излучающего диода оптрона, при котором открывается его фотосимистор, — 5 мА, а нагрузочная способность выхода модуля существенно ниже. Поэтому излучающий диод подключён к модулю через эмиттерный повторитель на транзисторе VT1, который обеспечивает необходимое усиление тока.

Применённый в качестве VS1 симистор BTA08-800 может коммутировать значительно более мощную цепь, чем указано выше. Но для этого его пришлось бы установить на теплоотвод, места для которого в авторском варианте конструкции не предусмотрено ввиду ограниченных размеров корпуса.

Все детали автомата, за исключением модуля HC-SR501, размещены на печатной плате размерами 58×28 мм (рис. 4), с которой модуль соединён тремя проводами. Плата рассчитана на установку резисторов для поверхностного монтажа типоразмера 1206. Остальные детали — в обычном исполнении. Оксидный конденсатор C1 «уложен» на плату и приклеен к ней. Конденсатор C2 — К73-17 с номинальным постоянным напряжением 630 В или аналогичный импортный. Трёхконтактная винтовая колодка Х11 для подключения питающей сети и светильника EL1 — DG301 -5.0-03P-12. Всё устройство, внешний вид которого показан на рис. 5, помещено в стандартный корпус G515B размерами 66x66x30 мм.

Рис. 4. Печатная плата

Рис. 5. Внешний вид устройства

Для реализации «ночного режима» (если он необходим) снимите с платы модуля линзу Френеля (сделать это очень легко), вставьте в отверстия «RL» выводы фоторезистора и припаяйте их, после чего установите линзу Френеля обратно. Но впаивать фоторезистор следует только после завершения налаживания и регулировки устройства, в противном случае проводить эти операции придётся в темноте, что очень неудобно.

Поскольку все элементы описанного устройства находятся под напряжением питающей сети, работая с ним при открытом корпусе, следует соблюдать правила электробезопасности.

Первое включение устройства целесообразно проводить без модуля HC-SR501, что позволит уберечь этот модуль от повреждения в случае неправильной работы узла питания. Включив устройство в сеть, прежде всего проверьте напряжение на конденсаторе C1, которое должно находиться в пределах 5,1±0,3 В. Через 20. 30 с отключите устройство от сети и оцените температуру корпуса стабилитрона VD2. Он может быть чуть тёплым. Сильный нагрев корпуса стабилитрона свидетельствует о неправильном выборе ёмкости или неисправности конденсатора C2.

Далее подключите к контактам 1 и 3 колодки XT1 лампу накаливания на 230 В. Включите устройство в сеть и подождите 20. 40 с завершения переходных процессов в модуле (в это время лампа может иногда зажигаться). Затем внесите движущийся объект в зону чувствительности модуля, например, просто взмахните вблизи него рукой — лампа должна включиться. Если так и произошло, всё работает нормально. Если нет, причинами могут быть:

— недостаточный для открывания фотосимистора оптрона U1 ток его излучающего диода. Он должен быть не менее7. 8 мА и может быть установлен подборкой резистора R1;

— неисправности деталей или ошибки монтажа.

Закончив проверку, подстроечными резисторами модуля HC-SR501 установите требуемые дальность обнаружения (правым, согласно рис. 2) и время удержания сигнала тревоги (левым, согласно рис. 2). Рекомендуется регулировать дальность обнаружения, установив устройство на место его постоянного расположения, чтобы учесть возможное влияние окружающих предметов на его работу. По завершении регулировки в модуль HC-SR501 при необходимости установите фоторезистор, обеспечивающий его работу в «ночном» режиме.

Файл печатной платы в формате Sprint Layout 5.0 можно найти здесь.

Автор: А. Савченко, пос. Зеленоградский Московской обл.

Мнения читателей
  • Анатолий / 11.06.2017 — 10:47

Извените за беспокойство уже сделано. работает просто супер

Анатолий / 11.06.2017 — 09:49

Здравствуйте схема работает очень и очень хорошо.У меня вопрос как эту схему применить для уличного освещения с фоторезистором?

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу: